141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )
141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )
141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )
141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
141144 If a uniform steel wire of $4 \mathrm{~m}$ length and cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ is extended by $1 \mathrm{~mm}$, the energy stored in the wire is (Assume Young's modulus of the wire $=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ )
141146 When the load on a wire is increasing slowly from $2 \mathrm{~kg}$ to $4 \mathrm{~kg}$, the elongation increases from $0.6 \mathrm{~mm}$ to $1 \mathrm{~mm}$. The work done during this extension of the wire is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$