04. Escape Velocity, Orbital Velocity, Satellites Motion, Binding Energy
Gravitation

138734 $R$ is a radius of a planet and $\rho$ is its density. The escape velocity on its surface will be-

1 $\mathrm{R}^{2} \sqrt{4 \pi \mathrm{G} \rho / 3}$
2 $\mathrm{R} \sqrt{4 \pi \mathrm{G} \rho / 3}$
3 $\mathrm{R}^{2} \sqrt{8 \pi \mathrm{G \rho} / 3}$
4 $\mathrm{R} \sqrt{8 \pi \mathrm{G} \rho / 3}$
Gravitation

138736 If an artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of the escape velocity from the earth, the height of the satellite above the surface of the earth is-

1 $2 \mathrm{R}$
2 $\frac{\mathrm{R}}{2}$
3 $\mathrm{R}$
4 $\frac{\mathrm{R}}{4}$
Gravitation

138737 The escape velocity of a projectile on the earth's surface is $11.2 \mathrm{kms}^{-1}$. A body is projected out with thrice this speed. The speed of the body far away from the earth will be :

1 $22.4 \mathrm{kms}^{-1}$
2 $31.7 \mathrm{kms}^{-1}$
3 $33.6 \mathrm{kms}^{-1}$
4 none of these
Gravitation

138738 A satellite is orbiting around the earth. By what percentage should we increase its velocity, so as to enable it escape away from the earth ?

1 $41.4 \%$
2 $50 \%$
3 $82.8 \%$
4 $100 \%$
Gravitation

138739 A body of mass $m$ is situated on the earth in the gravitational field of sun. For the body to escape from the gravitation pull of the solar system the body must be imparted an escape velocity of (assume earth to be stationary)

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $22.4 \mathrm{~km} / \mathrm{s}$
3 $33.6 \mathrm{~km} / \mathrm{s}$
4 $42 \mathrm{~km} / \mathrm{s}$
Gravitation

138734 $R$ is a radius of a planet and $\rho$ is its density. The escape velocity on its surface will be-

1 $\mathrm{R}^{2} \sqrt{4 \pi \mathrm{G} \rho / 3}$
2 $\mathrm{R} \sqrt{4 \pi \mathrm{G} \rho / 3}$
3 $\mathrm{R}^{2} \sqrt{8 \pi \mathrm{G \rho} / 3}$
4 $\mathrm{R} \sqrt{8 \pi \mathrm{G} \rho / 3}$
Gravitation

138736 If an artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of the escape velocity from the earth, the height of the satellite above the surface of the earth is-

1 $2 \mathrm{R}$
2 $\frac{\mathrm{R}}{2}$
3 $\mathrm{R}$
4 $\frac{\mathrm{R}}{4}$
Gravitation

138737 The escape velocity of a projectile on the earth's surface is $11.2 \mathrm{kms}^{-1}$. A body is projected out with thrice this speed. The speed of the body far away from the earth will be :

1 $22.4 \mathrm{kms}^{-1}$
2 $31.7 \mathrm{kms}^{-1}$
3 $33.6 \mathrm{kms}^{-1}$
4 none of these
Gravitation

138738 A satellite is orbiting around the earth. By what percentage should we increase its velocity, so as to enable it escape away from the earth ?

1 $41.4 \%$
2 $50 \%$
3 $82.8 \%$
4 $100 \%$
Gravitation

138739 A body of mass $m$ is situated on the earth in the gravitational field of sun. For the body to escape from the gravitation pull of the solar system the body must be imparted an escape velocity of (assume earth to be stationary)

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $22.4 \mathrm{~km} / \mathrm{s}$
3 $33.6 \mathrm{~km} / \mathrm{s}$
4 $42 \mathrm{~km} / \mathrm{s}$
Gravitation

138734 $R$ is a radius of a planet and $\rho$ is its density. The escape velocity on its surface will be-

1 $\mathrm{R}^{2} \sqrt{4 \pi \mathrm{G} \rho / 3}$
2 $\mathrm{R} \sqrt{4 \pi \mathrm{G} \rho / 3}$
3 $\mathrm{R}^{2} \sqrt{8 \pi \mathrm{G \rho} / 3}$
4 $\mathrm{R} \sqrt{8 \pi \mathrm{G} \rho / 3}$
Gravitation

138736 If an artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of the escape velocity from the earth, the height of the satellite above the surface of the earth is-

1 $2 \mathrm{R}$
2 $\frac{\mathrm{R}}{2}$
3 $\mathrm{R}$
4 $\frac{\mathrm{R}}{4}$
Gravitation

138737 The escape velocity of a projectile on the earth's surface is $11.2 \mathrm{kms}^{-1}$. A body is projected out with thrice this speed. The speed of the body far away from the earth will be :

1 $22.4 \mathrm{kms}^{-1}$
2 $31.7 \mathrm{kms}^{-1}$
3 $33.6 \mathrm{kms}^{-1}$
4 none of these
Gravitation

138738 A satellite is orbiting around the earth. By what percentage should we increase its velocity, so as to enable it escape away from the earth ?

1 $41.4 \%$
2 $50 \%$
3 $82.8 \%$
4 $100 \%$
Gravitation

138739 A body of mass $m$ is situated on the earth in the gravitational field of sun. For the body to escape from the gravitation pull of the solar system the body must be imparted an escape velocity of (assume earth to be stationary)

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $22.4 \mathrm{~km} / \mathrm{s}$
3 $33.6 \mathrm{~km} / \mathrm{s}$
4 $42 \mathrm{~km} / \mathrm{s}$
Gravitation

138734 $R$ is a radius of a planet and $\rho$ is its density. The escape velocity on its surface will be-

1 $\mathrm{R}^{2} \sqrt{4 \pi \mathrm{G} \rho / 3}$
2 $\mathrm{R} \sqrt{4 \pi \mathrm{G} \rho / 3}$
3 $\mathrm{R}^{2} \sqrt{8 \pi \mathrm{G \rho} / 3}$
4 $\mathrm{R} \sqrt{8 \pi \mathrm{G} \rho / 3}$
Gravitation

138736 If an artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of the escape velocity from the earth, the height of the satellite above the surface of the earth is-

1 $2 \mathrm{R}$
2 $\frac{\mathrm{R}}{2}$
3 $\mathrm{R}$
4 $\frac{\mathrm{R}}{4}$
Gravitation

138737 The escape velocity of a projectile on the earth's surface is $11.2 \mathrm{kms}^{-1}$. A body is projected out with thrice this speed. The speed of the body far away from the earth will be :

1 $22.4 \mathrm{kms}^{-1}$
2 $31.7 \mathrm{kms}^{-1}$
3 $33.6 \mathrm{kms}^{-1}$
4 none of these
Gravitation

138738 A satellite is orbiting around the earth. By what percentage should we increase its velocity, so as to enable it escape away from the earth ?

1 $41.4 \%$
2 $50 \%$
3 $82.8 \%$
4 $100 \%$
Gravitation

138739 A body of mass $m$ is situated on the earth in the gravitational field of sun. For the body to escape from the gravitation pull of the solar system the body must be imparted an escape velocity of (assume earth to be stationary)

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $22.4 \mathrm{~km} / \mathrm{s}$
3 $33.6 \mathrm{~km} / \mathrm{s}$
4 $42 \mathrm{~km} / \mathrm{s}$
Gravitation

138734 $R$ is a radius of a planet and $\rho$ is its density. The escape velocity on its surface will be-

1 $\mathrm{R}^{2} \sqrt{4 \pi \mathrm{G} \rho / 3}$
2 $\mathrm{R} \sqrt{4 \pi \mathrm{G} \rho / 3}$
3 $\mathrm{R}^{2} \sqrt{8 \pi \mathrm{G \rho} / 3}$
4 $\mathrm{R} \sqrt{8 \pi \mathrm{G} \rho / 3}$
Gravitation

138736 If an artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of the escape velocity from the earth, the height of the satellite above the surface of the earth is-

1 $2 \mathrm{R}$
2 $\frac{\mathrm{R}}{2}$
3 $\mathrm{R}$
4 $\frac{\mathrm{R}}{4}$
Gravitation

138737 The escape velocity of a projectile on the earth's surface is $11.2 \mathrm{kms}^{-1}$. A body is projected out with thrice this speed. The speed of the body far away from the earth will be :

1 $22.4 \mathrm{kms}^{-1}$
2 $31.7 \mathrm{kms}^{-1}$
3 $33.6 \mathrm{kms}^{-1}$
4 none of these
Gravitation

138738 A satellite is orbiting around the earth. By what percentage should we increase its velocity, so as to enable it escape away from the earth ?

1 $41.4 \%$
2 $50 \%$
3 $82.8 \%$
4 $100 \%$
Gravitation

138739 A body of mass $m$ is situated on the earth in the gravitational field of sun. For the body to escape from the gravitation pull of the solar system the body must be imparted an escape velocity of (assume earth to be stationary)

1 $11.2 \mathrm{~km} / \mathrm{s}$
2 $22.4 \mathrm{~km} / \mathrm{s}$
3 $33.6 \mathrm{~km} / \mathrm{s}$
4 $42 \mathrm{~km} / \mathrm{s}$