04. Escape Velocity, Orbital Velocity, Satellites Motion, Binding Energy
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138676 A satellite is launched in a circular orbit of radius $R$ around the earth. $A$ second satellite is launched into an orbit or radius $1.01 R$. The time period of second satellite is longer than the first one (approximately) by

1 $1.5 \%$
2 $0.5 \%$
3 $3 \%$
4 $1 \%$
5 $2 \%$
Gravitation

138677 The mass of a planet is six times that of the earth. The radius of the planet is twice that of the earth. If the escape velocity from the earth is $v$, then the escape velocity from the planet is:

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $\mathrm{V}$
4 $\sqrt{5} \mathrm{v}$
5 $\sqrt{12} \mathrm{v}$
Gravitation

138678 The escape velocity for the earth is $v_{e^{*}}$. The escape velocity for a planet whose radius is $\frac{1}{4}$ th the radius of the earth and mass half that of the earth is

1 $\frac{\mathrm{V}_{\mathrm{e}}}{\sqrt{2}}$
2 $\sqrt{2} \mathrm{v}_{\mathrm{e}}$
3 $2 \mathrm{v}_{\mathrm{e}}$
4 $\frac{\mathrm{v}_{\mathrm{e}}}{2}$
Gravitation

138679 The velocity of a satellite moving in an orbit about earth at a distance equal to radius $R$ of earth will be

1 $\sqrt{\mathrm{gR}}$
2 $\sqrt{0.5 \mathrm{gR}}$
3 $\sqrt{2 \mathrm{gR}}$
4 $\sqrt{3 g R}$
Gravitation

138676 A satellite is launched in a circular orbit of radius $R$ around the earth. $A$ second satellite is launched into an orbit or radius $1.01 R$. The time period of second satellite is longer than the first one (approximately) by

1 $1.5 \%$
2 $0.5 \%$
3 $3 \%$
4 $1 \%$
5 $2 \%$
Gravitation

138677 The mass of a planet is six times that of the earth. The radius of the planet is twice that of the earth. If the escape velocity from the earth is $v$, then the escape velocity from the planet is:

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $\mathrm{V}$
4 $\sqrt{5} \mathrm{v}$
5 $\sqrt{12} \mathrm{v}$
Gravitation

138678 The escape velocity for the earth is $v_{e^{*}}$. The escape velocity for a planet whose radius is $\frac{1}{4}$ th the radius of the earth and mass half that of the earth is

1 $\frac{\mathrm{V}_{\mathrm{e}}}{\sqrt{2}}$
2 $\sqrt{2} \mathrm{v}_{\mathrm{e}}$
3 $2 \mathrm{v}_{\mathrm{e}}$
4 $\frac{\mathrm{v}_{\mathrm{e}}}{2}$
Gravitation

138679 The velocity of a satellite moving in an orbit about earth at a distance equal to radius $R$ of earth will be

1 $\sqrt{\mathrm{gR}}$
2 $\sqrt{0.5 \mathrm{gR}}$
3 $\sqrt{2 \mathrm{gR}}$
4 $\sqrt{3 g R}$
Gravitation

138676 A satellite is launched in a circular orbit of radius $R$ around the earth. $A$ second satellite is launched into an orbit or radius $1.01 R$. The time period of second satellite is longer than the first one (approximately) by

1 $1.5 \%$
2 $0.5 \%$
3 $3 \%$
4 $1 \%$
5 $2 \%$
Gravitation

138677 The mass of a planet is six times that of the earth. The radius of the planet is twice that of the earth. If the escape velocity from the earth is $v$, then the escape velocity from the planet is:

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $\mathrm{V}$
4 $\sqrt{5} \mathrm{v}$
5 $\sqrt{12} \mathrm{v}$
Gravitation

138678 The escape velocity for the earth is $v_{e^{*}}$. The escape velocity for a planet whose radius is $\frac{1}{4}$ th the radius of the earth and mass half that of the earth is

1 $\frac{\mathrm{V}_{\mathrm{e}}}{\sqrt{2}}$
2 $\sqrt{2} \mathrm{v}_{\mathrm{e}}$
3 $2 \mathrm{v}_{\mathrm{e}}$
4 $\frac{\mathrm{v}_{\mathrm{e}}}{2}$
Gravitation

138679 The velocity of a satellite moving in an orbit about earth at a distance equal to radius $R$ of earth will be

1 $\sqrt{\mathrm{gR}}$
2 $\sqrt{0.5 \mathrm{gR}}$
3 $\sqrt{2 \mathrm{gR}}$
4 $\sqrt{3 g R}$
Gravitation

138676 A satellite is launched in a circular orbit of radius $R$ around the earth. $A$ second satellite is launched into an orbit or radius $1.01 R$. The time period of second satellite is longer than the first one (approximately) by

1 $1.5 \%$
2 $0.5 \%$
3 $3 \%$
4 $1 \%$
5 $2 \%$
Gravitation

138677 The mass of a planet is six times that of the earth. The radius of the planet is twice that of the earth. If the escape velocity from the earth is $v$, then the escape velocity from the planet is:

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $\mathrm{V}$
4 $\sqrt{5} \mathrm{v}$
5 $\sqrt{12} \mathrm{v}$
Gravitation

138678 The escape velocity for the earth is $v_{e^{*}}$. The escape velocity for a planet whose radius is $\frac{1}{4}$ th the radius of the earth and mass half that of the earth is

1 $\frac{\mathrm{V}_{\mathrm{e}}}{\sqrt{2}}$
2 $\sqrt{2} \mathrm{v}_{\mathrm{e}}$
3 $2 \mathrm{v}_{\mathrm{e}}$
4 $\frac{\mathrm{v}_{\mathrm{e}}}{2}$
Gravitation

138679 The velocity of a satellite moving in an orbit about earth at a distance equal to radius $R$ of earth will be

1 $\sqrt{\mathrm{gR}}$
2 $\sqrt{0.5 \mathrm{gR}}$
3 $\sqrt{2 \mathrm{gR}}$
4 $\sqrt{3 g R}$