04. Escape Velocity, Orbital Velocity, Satellites Motion, Binding Energy
Gravitation

138672 If the escape velocity of a planet is 3 times that of the earth and its radius is 4 times that of the earth, then the mass of the planet is ( mass of the earth $=6 \times 10^{24} \mathrm{~kg}$ )

1 $1.62 \times 10^{22} \mathrm{~kg}$
2 $0.72 \times 10^{22} \mathrm{~kg}$
3 $2.16 \times 10^{26} \mathrm{~kg}$
4 $1.22 \times 10^{22} \mathrm{~kg}$
5 $3.6 \times 10^{22} \mathrm{~kg}$
Gravitation

138673 A satellite is revolving around the earth with a kinetic energy $E$. The minimum addition of kinetic energy needed to make it escape from its orbit is

1 $2 \mathrm{E}$
2 $\sqrt{\mathrm{E}}$
3 $\mathrm{E} / 2$
4 $\sqrt{\mathrm{E}} / 2$
5 $\mathrm{E}$
Gravitation

138674 Three identical bodies of mass $M$ are located at the vertices of an equilateral triangle of side $L$. they revolve under the effect of mutual gravitational force in a circular orbit, circumscribing the triangle while preserving the equilateral triangle. Their orbital velocity is

1 $\sqrt{\frac{\mathrm{GM}}{\mathrm{L}}}$
2 $\sqrt{\frac{3 \mathrm{GM}}{2 \mathrm{~L}}}$
3 $\sqrt{\frac{3 \mathrm{GM}}{\mathrm{L}}}$
4 $\sqrt{\frac{2 \mathrm{GM}}{3 \mathrm{~L}}}$
5 $\sqrt{\frac{\mathrm{GM}}{3 \mathrm{~L}}}$
Gravitation

138675 The escape velocity of body on the surface of earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the mass of the earth is doubled and its radius halved, the escape velocity becomes

1 $5.6 \mathrm{~km} / \mathrm{s}$
2 $11.2 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $44.8 \mathrm{~km} / \mathrm{s}$
5 $67.2 \mathrm{~km} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Gravitation

138672 If the escape velocity of a planet is 3 times that of the earth and its radius is 4 times that of the earth, then the mass of the planet is ( mass of the earth $=6 \times 10^{24} \mathrm{~kg}$ )

1 $1.62 \times 10^{22} \mathrm{~kg}$
2 $0.72 \times 10^{22} \mathrm{~kg}$
3 $2.16 \times 10^{26} \mathrm{~kg}$
4 $1.22 \times 10^{22} \mathrm{~kg}$
5 $3.6 \times 10^{22} \mathrm{~kg}$
Gravitation

138673 A satellite is revolving around the earth with a kinetic energy $E$. The minimum addition of kinetic energy needed to make it escape from its orbit is

1 $2 \mathrm{E}$
2 $\sqrt{\mathrm{E}}$
3 $\mathrm{E} / 2$
4 $\sqrt{\mathrm{E}} / 2$
5 $\mathrm{E}$
Gravitation

138674 Three identical bodies of mass $M$ are located at the vertices of an equilateral triangle of side $L$. they revolve under the effect of mutual gravitational force in a circular orbit, circumscribing the triangle while preserving the equilateral triangle. Their orbital velocity is

1 $\sqrt{\frac{\mathrm{GM}}{\mathrm{L}}}$
2 $\sqrt{\frac{3 \mathrm{GM}}{2 \mathrm{~L}}}$
3 $\sqrt{\frac{3 \mathrm{GM}}{\mathrm{L}}}$
4 $\sqrt{\frac{2 \mathrm{GM}}{3 \mathrm{~L}}}$
5 $\sqrt{\frac{\mathrm{GM}}{3 \mathrm{~L}}}$
Gravitation

138675 The escape velocity of body on the surface of earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the mass of the earth is doubled and its radius halved, the escape velocity becomes

1 $5.6 \mathrm{~km} / \mathrm{s}$
2 $11.2 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $44.8 \mathrm{~km} / \mathrm{s}$
5 $67.2 \mathrm{~km} / \mathrm{s}$
Gravitation

138672 If the escape velocity of a planet is 3 times that of the earth and its radius is 4 times that of the earth, then the mass of the planet is ( mass of the earth $=6 \times 10^{24} \mathrm{~kg}$ )

1 $1.62 \times 10^{22} \mathrm{~kg}$
2 $0.72 \times 10^{22} \mathrm{~kg}$
3 $2.16 \times 10^{26} \mathrm{~kg}$
4 $1.22 \times 10^{22} \mathrm{~kg}$
5 $3.6 \times 10^{22} \mathrm{~kg}$
Gravitation

138673 A satellite is revolving around the earth with a kinetic energy $E$. The minimum addition of kinetic energy needed to make it escape from its orbit is

1 $2 \mathrm{E}$
2 $\sqrt{\mathrm{E}}$
3 $\mathrm{E} / 2$
4 $\sqrt{\mathrm{E}} / 2$
5 $\mathrm{E}$
Gravitation

138674 Three identical bodies of mass $M$ are located at the vertices of an equilateral triangle of side $L$. they revolve under the effect of mutual gravitational force in a circular orbit, circumscribing the triangle while preserving the equilateral triangle. Their orbital velocity is

1 $\sqrt{\frac{\mathrm{GM}}{\mathrm{L}}}$
2 $\sqrt{\frac{3 \mathrm{GM}}{2 \mathrm{~L}}}$
3 $\sqrt{\frac{3 \mathrm{GM}}{\mathrm{L}}}$
4 $\sqrt{\frac{2 \mathrm{GM}}{3 \mathrm{~L}}}$
5 $\sqrt{\frac{\mathrm{GM}}{3 \mathrm{~L}}}$
Gravitation

138675 The escape velocity of body on the surface of earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the mass of the earth is doubled and its radius halved, the escape velocity becomes

1 $5.6 \mathrm{~km} / \mathrm{s}$
2 $11.2 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $44.8 \mathrm{~km} / \mathrm{s}$
5 $67.2 \mathrm{~km} / \mathrm{s}$
Gravitation

138672 If the escape velocity of a planet is 3 times that of the earth and its radius is 4 times that of the earth, then the mass of the planet is ( mass of the earth $=6 \times 10^{24} \mathrm{~kg}$ )

1 $1.62 \times 10^{22} \mathrm{~kg}$
2 $0.72 \times 10^{22} \mathrm{~kg}$
3 $2.16 \times 10^{26} \mathrm{~kg}$
4 $1.22 \times 10^{22} \mathrm{~kg}$
5 $3.6 \times 10^{22} \mathrm{~kg}$
Gravitation

138673 A satellite is revolving around the earth with a kinetic energy $E$. The minimum addition of kinetic energy needed to make it escape from its orbit is

1 $2 \mathrm{E}$
2 $\sqrt{\mathrm{E}}$
3 $\mathrm{E} / 2$
4 $\sqrt{\mathrm{E}} / 2$
5 $\mathrm{E}$
Gravitation

138674 Three identical bodies of mass $M$ are located at the vertices of an equilateral triangle of side $L$. they revolve under the effect of mutual gravitational force in a circular orbit, circumscribing the triangle while preserving the equilateral triangle. Their orbital velocity is

1 $\sqrt{\frac{\mathrm{GM}}{\mathrm{L}}}$
2 $\sqrt{\frac{3 \mathrm{GM}}{2 \mathrm{~L}}}$
3 $\sqrt{\frac{3 \mathrm{GM}}{\mathrm{L}}}$
4 $\sqrt{\frac{2 \mathrm{GM}}{3 \mathrm{~L}}}$
5 $\sqrt{\frac{\mathrm{GM}}{3 \mathrm{~L}}}$
Gravitation

138675 The escape velocity of body on the surface of earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the mass of the earth is doubled and its radius halved, the escape velocity becomes

1 $5.6 \mathrm{~km} / \mathrm{s}$
2 $11.2 \mathrm{~km} / \mathrm{s}$
3 $22.4 \mathrm{~km} / \mathrm{s}$
4 $44.8 \mathrm{~km} / \mathrm{s}$
5 $67.2 \mathrm{~km} / \mathrm{s}$