01. Acceleration due to Gravity
Gravitation

138403 If the acceleration due to gravity $g$ at the earth's surface is $9.8 \mathrm{~ms}^{-2}$ and mass of earth is 80 times that of moon and radius of earth 4 times that of moon, the value of $g$ at the moon's surface will be

1 $1.96 \mathrm{~ms}^{-2}$
2 $2.96 \mathrm{~ms}^{-2}$
3 $0.96 \mathrm{~ms}^{-2}$
4 $3.96 \mathrm{~ms}^{-2}$
Gravitation

138404 The mass of a planet is $1 / 9$ of the mass of the earth and its radius is half that of the earth. If a body weighs $9 \mathrm{~N}$ on the earth, its weight on the planet would be

1 $6 \mathrm{~N}$
2 $4 \mathrm{~N}$
3 $2 \mathrm{~N}$
4 $1 \mathrm{~N}$
Gravitation

138405 Value of $g$ is

1 maximum at poles
2 maximum at equator
3 same everywhere
4 minimum at poles
Gravitation

138406 $R$ and $r$ are the radii of the earth and moon respectively, $\rho_{e}$ and $\rho_{m}$ are densities of earth and moon respectively. The ratio of the acceleration due to gravity on the surfaces of the moon and earth, is

1 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
2 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
3 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$
4 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$
Gravitation

138403 If the acceleration due to gravity $g$ at the earth's surface is $9.8 \mathrm{~ms}^{-2}$ and mass of earth is 80 times that of moon and radius of earth 4 times that of moon, the value of $g$ at the moon's surface will be

1 $1.96 \mathrm{~ms}^{-2}$
2 $2.96 \mathrm{~ms}^{-2}$
3 $0.96 \mathrm{~ms}^{-2}$
4 $3.96 \mathrm{~ms}^{-2}$
Gravitation

138404 The mass of a planet is $1 / 9$ of the mass of the earth and its radius is half that of the earth. If a body weighs $9 \mathrm{~N}$ on the earth, its weight on the planet would be

1 $6 \mathrm{~N}$
2 $4 \mathrm{~N}$
3 $2 \mathrm{~N}$
4 $1 \mathrm{~N}$
Gravitation

138405 Value of $g$ is

1 maximum at poles
2 maximum at equator
3 same everywhere
4 minimum at poles
Gravitation

138406 $R$ and $r$ are the radii of the earth and moon respectively, $\rho_{e}$ and $\rho_{m}$ are densities of earth and moon respectively. The ratio of the acceleration due to gravity on the surfaces of the moon and earth, is

1 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
2 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
3 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$
4 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$
Gravitation

138403 If the acceleration due to gravity $g$ at the earth's surface is $9.8 \mathrm{~ms}^{-2}$ and mass of earth is 80 times that of moon and radius of earth 4 times that of moon, the value of $g$ at the moon's surface will be

1 $1.96 \mathrm{~ms}^{-2}$
2 $2.96 \mathrm{~ms}^{-2}$
3 $0.96 \mathrm{~ms}^{-2}$
4 $3.96 \mathrm{~ms}^{-2}$
Gravitation

138404 The mass of a planet is $1 / 9$ of the mass of the earth and its radius is half that of the earth. If a body weighs $9 \mathrm{~N}$ on the earth, its weight on the planet would be

1 $6 \mathrm{~N}$
2 $4 \mathrm{~N}$
3 $2 \mathrm{~N}$
4 $1 \mathrm{~N}$
Gravitation

138405 Value of $g$ is

1 maximum at poles
2 maximum at equator
3 same everywhere
4 minimum at poles
Gravitation

138406 $R$ and $r$ are the radii of the earth and moon respectively, $\rho_{e}$ and $\rho_{m}$ are densities of earth and moon respectively. The ratio of the acceleration due to gravity on the surfaces of the moon and earth, is

1 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
2 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
3 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$
4 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$
Gravitation

138403 If the acceleration due to gravity $g$ at the earth's surface is $9.8 \mathrm{~ms}^{-2}$ and mass of earth is 80 times that of moon and radius of earth 4 times that of moon, the value of $g$ at the moon's surface will be

1 $1.96 \mathrm{~ms}^{-2}$
2 $2.96 \mathrm{~ms}^{-2}$
3 $0.96 \mathrm{~ms}^{-2}$
4 $3.96 \mathrm{~ms}^{-2}$
Gravitation

138404 The mass of a planet is $1 / 9$ of the mass of the earth and its radius is half that of the earth. If a body weighs $9 \mathrm{~N}$ on the earth, its weight on the planet would be

1 $6 \mathrm{~N}$
2 $4 \mathrm{~N}$
3 $2 \mathrm{~N}$
4 $1 \mathrm{~N}$
Gravitation

138405 Value of $g$ is

1 maximum at poles
2 maximum at equator
3 same everywhere
4 minimum at poles
Gravitation

138406 $R$ and $r$ are the radii of the earth and moon respectively, $\rho_{e}$ and $\rho_{m}$ are densities of earth and moon respectively. The ratio of the acceleration due to gravity on the surfaces of the moon and earth, is

1 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
2 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{m}}}$
3 $\frac{\mathrm{r}}{\mathrm{R}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$
4 $\frac{\mathrm{R}}{\mathrm{r}} \cdot \frac{\rho_{\mathrm{m}}}{\rho_{\mathrm{e}}}$