01. Acceleration due to Gravity
Gravitation

138396 The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is $R$, the radius of the planet would be

1 $4 \mathrm{R}$
2 $2 \mathrm{R}$
3 $R / 2$
4 $\mathrm{R} / 4$
Gravitation

138397 Calculate the acceleration due to gravity on the surface of a pulsar of mass $M=1.98 \times 10^{30} \mathrm{~kg}$ and radius $R=12 \mathrm{~km}$ rotating with time period $T=0.041$ seconds. $\left(G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)$

1 $9.2 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
2 $8.15 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
3 $7.32 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
4 $6.98 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
Gravitation

138399 The dependence of acceleration due to gravity $g$ on the distance $r$ from the centre of the earth assumed to be sphere of radius $R$ of uniform density is shown in figure below.
The correct figure is

1
2
3
4
Gravitation

138400 If the earth stops rotating, the value of $g$ at the equator

1 Increases
2 decreases
3 no effect
4 none of these
Gravitation

138401 The acceleration due to gravity at a height (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ on earth surface) above earth's surface is $9 \mathrm{~ms}^{-2}$. It value at a point, at an equal distance below the surface of the earth is

1 $9.7 \mathrm{~ms}^{-2}$
2 $8.5 \mathrm{~ms}^{-2}$
3 $7 . \mathrm{ms}^{-2}$
4 $5.5 \mathrm{~ms}^{-2}$
Gravitation

138396 The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is $R$, the radius of the planet would be

1 $4 \mathrm{R}$
2 $2 \mathrm{R}$
3 $R / 2$
4 $\mathrm{R} / 4$
Gravitation

138397 Calculate the acceleration due to gravity on the surface of a pulsar of mass $M=1.98 \times 10^{30} \mathrm{~kg}$ and radius $R=12 \mathrm{~km}$ rotating with time period $T=0.041$ seconds. $\left(G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)$

1 $9.2 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
2 $8.15 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
3 $7.32 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
4 $6.98 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
Gravitation

138399 The dependence of acceleration due to gravity $g$ on the distance $r$ from the centre of the earth assumed to be sphere of radius $R$ of uniform density is shown in figure below.
The correct figure is

1
2
3
4
Gravitation

138400 If the earth stops rotating, the value of $g$ at the equator

1 Increases
2 decreases
3 no effect
4 none of these
Gravitation

138401 The acceleration due to gravity at a height (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ on earth surface) above earth's surface is $9 \mathrm{~ms}^{-2}$. It value at a point, at an equal distance below the surface of the earth is

1 $9.7 \mathrm{~ms}^{-2}$
2 $8.5 \mathrm{~ms}^{-2}$
3 $7 . \mathrm{ms}^{-2}$
4 $5.5 \mathrm{~ms}^{-2}$
Gravitation

138396 The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is $R$, the radius of the planet would be

1 $4 \mathrm{R}$
2 $2 \mathrm{R}$
3 $R / 2$
4 $\mathrm{R} / 4$
Gravitation

138397 Calculate the acceleration due to gravity on the surface of a pulsar of mass $M=1.98 \times 10^{30} \mathrm{~kg}$ and radius $R=12 \mathrm{~km}$ rotating with time period $T=0.041$ seconds. $\left(G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)$

1 $9.2 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
2 $8.15 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
3 $7.32 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
4 $6.98 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
Gravitation

138399 The dependence of acceleration due to gravity $g$ on the distance $r$ from the centre of the earth assumed to be sphere of radius $R$ of uniform density is shown in figure below.
The correct figure is

1
2
3
4
Gravitation

138400 If the earth stops rotating, the value of $g$ at the equator

1 Increases
2 decreases
3 no effect
4 none of these
Gravitation

138401 The acceleration due to gravity at a height (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ on earth surface) above earth's surface is $9 \mathrm{~ms}^{-2}$. It value at a point, at an equal distance below the surface of the earth is

1 $9.7 \mathrm{~ms}^{-2}$
2 $8.5 \mathrm{~ms}^{-2}$
3 $7 . \mathrm{ms}^{-2}$
4 $5.5 \mathrm{~ms}^{-2}$
Gravitation

138396 The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is $R$, the radius of the planet would be

1 $4 \mathrm{R}$
2 $2 \mathrm{R}$
3 $R / 2$
4 $\mathrm{R} / 4$
Gravitation

138397 Calculate the acceleration due to gravity on the surface of a pulsar of mass $M=1.98 \times 10^{30} \mathrm{~kg}$ and radius $R=12 \mathrm{~km}$ rotating with time period $T=0.041$ seconds. $\left(G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)$

1 $9.2 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
2 $8.15 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
3 $7.32 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
4 $6.98 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
Gravitation

138399 The dependence of acceleration due to gravity $g$ on the distance $r$ from the centre of the earth assumed to be sphere of radius $R$ of uniform density is shown in figure below.
The correct figure is

1
2
3
4
Gravitation

138400 If the earth stops rotating, the value of $g$ at the equator

1 Increases
2 decreases
3 no effect
4 none of these
Gravitation

138401 The acceleration due to gravity at a height (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ on earth surface) above earth's surface is $9 \mathrm{~ms}^{-2}$. It value at a point, at an equal distance below the surface of the earth is

1 $9.7 \mathrm{~ms}^{-2}$
2 $8.5 \mathrm{~ms}^{-2}$
3 $7 . \mathrm{ms}^{-2}$
4 $5.5 \mathrm{~ms}^{-2}$
Gravitation

138396 The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is $R$, the radius of the planet would be

1 $4 \mathrm{R}$
2 $2 \mathrm{R}$
3 $R / 2$
4 $\mathrm{R} / 4$
Gravitation

138397 Calculate the acceleration due to gravity on the surface of a pulsar of mass $M=1.98 \times 10^{30} \mathrm{~kg}$ and radius $R=12 \mathrm{~km}$ rotating with time period $T=0.041$ seconds. $\left(G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right)$

1 $9.2 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
2 $8.15 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
3 $7.32 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
4 $6.98 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
Gravitation

138399 The dependence of acceleration due to gravity $g$ on the distance $r$ from the centre of the earth assumed to be sphere of radius $R$ of uniform density is shown in figure below.
The correct figure is

1
2
3
4
Gravitation

138400 If the earth stops rotating, the value of $g$ at the equator

1 Increases
2 decreases
3 no effect
4 none of these
Gravitation

138401 The acceleration due to gravity at a height (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ on earth surface) above earth's surface is $9 \mathrm{~ms}^{-2}$. It value at a point, at an equal distance below the surface of the earth is

1 $9.7 \mathrm{~ms}^{-2}$
2 $8.5 \mathrm{~ms}^{-2}$
3 $7 . \mathrm{ms}^{-2}$
4 $5.5 \mathrm{~ms}^{-2}$