Explanation:
B Given,
$\text { Mass }=10 \mathrm{~g}=\frac{10}{1000} \mathrm{~kg}$
$\mathrm{u}=20 \mathrm{~m} / \mathrm{s}, \mathrm{v}=0 \mathrm{~m} / \mathrm{s}$
We know that,
Equation of third law of motion,
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \quad(\because \mathrm{a}=-\mathrm{g})$
$0=\mathrm{u}^{2}-2 \mathrm{gh}$
$2 \mathrm{gh}=\mathrm{u}^{2}$
$\mathrm{~h}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}$
The work done by gravity is equal,
$\mathrm{W}_{\text {gravity }}= -\mathrm{mgh}$
$=-\mathrm{mg} \times \frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=-\frac{\mathrm{mu}^{2}}{2}$
$=-\frac{10 \times(20)^{2}}{2 \times 1000}$
$=-\frac{400 \times 10}{2 \times 1000}$
$\mathrm{~W}_{\text {gravity }} =-2 \mathrm{~J}$