148786 At a certain instant, an object is subjected to a force $\overrightarrow{\mathbf{F}}=[(4.0) \hat{\mathbf{i}}-(2.0) \hat{\mathbf{j}}+(9.0) \hat{\mathbf{k}}] \mathbf{N}$ while the object's velocity is $\overrightarrow{\mathbf{v}}=[-(2.0) \hat{\mathbf{i}}+(4.0) \hat{\mathbf{k}}] \mathrm{m} / \mathrm{s}$. The instantaneous rate at which the force does work on the object is
148787 A force $\overrightarrow{\mathbf{F}}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ acting on a particle causes displacement $\overrightarrow{\mathbf{S}}=-4 \hat{\mathbf{i}}+\mathbf{x} \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ in the direction of $\overrightarrow{\mathbf{F}}$. If the work done is $12 \mathrm{~J}$, then value of ' $x$ ' is
148786 At a certain instant, an object is subjected to a force $\overrightarrow{\mathbf{F}}=[(4.0) \hat{\mathbf{i}}-(2.0) \hat{\mathbf{j}}+(9.0) \hat{\mathbf{k}}] \mathbf{N}$ while the object's velocity is $\overrightarrow{\mathbf{v}}=[-(2.0) \hat{\mathbf{i}}+(4.0) \hat{\mathbf{k}}] \mathrm{m} / \mathrm{s}$. The instantaneous rate at which the force does work on the object is
148787 A force $\overrightarrow{\mathbf{F}}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ acting on a particle causes displacement $\overrightarrow{\mathbf{S}}=-4 \hat{\mathbf{i}}+\mathbf{x} \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ in the direction of $\overrightarrow{\mathbf{F}}$. If the work done is $12 \mathrm{~J}$, then value of ' $x$ ' is
148786 At a certain instant, an object is subjected to a force $\overrightarrow{\mathbf{F}}=[(4.0) \hat{\mathbf{i}}-(2.0) \hat{\mathbf{j}}+(9.0) \hat{\mathbf{k}}] \mathbf{N}$ while the object's velocity is $\overrightarrow{\mathbf{v}}=[-(2.0) \hat{\mathbf{i}}+(4.0) \hat{\mathbf{k}}] \mathrm{m} / \mathrm{s}$. The instantaneous rate at which the force does work on the object is
148787 A force $\overrightarrow{\mathbf{F}}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ acting on a particle causes displacement $\overrightarrow{\mathbf{S}}=-4 \hat{\mathbf{i}}+\mathbf{x} \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ in the direction of $\overrightarrow{\mathbf{F}}$. If the work done is $12 \mathrm{~J}$, then value of ' $x$ ' is
148786 At a certain instant, an object is subjected to a force $\overrightarrow{\mathbf{F}}=[(4.0) \hat{\mathbf{i}}-(2.0) \hat{\mathbf{j}}+(9.0) \hat{\mathbf{k}}] \mathbf{N}$ while the object's velocity is $\overrightarrow{\mathbf{v}}=[-(2.0) \hat{\mathbf{i}}+(4.0) \hat{\mathbf{k}}] \mathrm{m} / \mathrm{s}$. The instantaneous rate at which the force does work on the object is
148787 A force $\overrightarrow{\mathbf{F}}=3 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ acting on a particle causes displacement $\overrightarrow{\mathbf{S}}=-4 \hat{\mathbf{i}}+\mathbf{x} \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ in the direction of $\overrightarrow{\mathbf{F}}$. If the work done is $12 \mathrm{~J}$, then value of ' $x$ ' is