00. Work done by Force and Power
Work, Energy and Power

148790 A metal chain of mass $2 \mathrm{~kg}$ and length $90 \mathrm{~cm}$ over hangs a table with $60 \mathrm{~cm}$ on the table. How much work needs to be done to put the hanging part of the chain back on the table? (Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $1 \mathrm{~J}$
4 $3 \mathrm{~J}$
Work, Energy and Power

148792 A force $F$ acting on a body depends on its displacement $\mathrm{S}$ as $\mathrm{F} \propto \mathrm{S}^{-1 / 3}$. The power delivered by $F$ will depend on displacement as

1 $\mathrm{S}^{2 / 3}$
2 $\mathrm{S}^{-5 / 3}$
3 $\mathrm{S}^{1 / 2}$
4 $\mathrm{S}^{0}$
Work, Energy and Power

148793 A block of mass $48 \mathrm{~kg}$ kept on a smooth horizontal surface is pulled by a rope of length $4 \mathrm{~m}$ by a horizontal force of $25 \mathrm{~N}$ applied to the other end. If the linear density of the rope is 0.5 $\mathrm{kg} \mathrm{m}^{-3}$, the force acting on the block is

1 $24 \mathrm{~N}$
2 $25 \mathrm{~N}$
3 $12 \mathrm{~N}$
4 $13 \mathrm{~N}$
Work, Energy and Power

148794 A man drags a block through $10 \mathrm{~m}$ on rough surface $(\mu=0.5)$. A force of $\sqrt{3} \mathrm{kN}$ acting at $30^{\circ}$ to the horizontal. The work done by applied force is

1 Zero
2 $7.5 \mathrm{~kJ}$
3 $15 \mathrm{~kJ}$
4 $10 \mathrm{~kJ}$
Work, Energy and Power

148795 A force of $2 \hat{i}+3 \hat{j}+4 \hat{k} N$ acts on a body for 4 second, produces a displacement of $(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \mathbf{m}$. The power used is

1 $9.5 \mathrm{~W}$
2 $7.5 \mathrm{~W}$
3 $6.5 \mathrm{~W}$
4 $4.5 \mathrm{~W}$
Work, Energy and Power

148790 A metal chain of mass $2 \mathrm{~kg}$ and length $90 \mathrm{~cm}$ over hangs a table with $60 \mathrm{~cm}$ on the table. How much work needs to be done to put the hanging part of the chain back on the table? (Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $1 \mathrm{~J}$
4 $3 \mathrm{~J}$
Work, Energy and Power

148792 A force $F$ acting on a body depends on its displacement $\mathrm{S}$ as $\mathrm{F} \propto \mathrm{S}^{-1 / 3}$. The power delivered by $F$ will depend on displacement as

1 $\mathrm{S}^{2 / 3}$
2 $\mathrm{S}^{-5 / 3}$
3 $\mathrm{S}^{1 / 2}$
4 $\mathrm{S}^{0}$
Work, Energy and Power

148793 A block of mass $48 \mathrm{~kg}$ kept on a smooth horizontal surface is pulled by a rope of length $4 \mathrm{~m}$ by a horizontal force of $25 \mathrm{~N}$ applied to the other end. If the linear density of the rope is 0.5 $\mathrm{kg} \mathrm{m}^{-3}$, the force acting on the block is

1 $24 \mathrm{~N}$
2 $25 \mathrm{~N}$
3 $12 \mathrm{~N}$
4 $13 \mathrm{~N}$
Work, Energy and Power

148794 A man drags a block through $10 \mathrm{~m}$ on rough surface $(\mu=0.5)$. A force of $\sqrt{3} \mathrm{kN}$ acting at $30^{\circ}$ to the horizontal. The work done by applied force is

1 Zero
2 $7.5 \mathrm{~kJ}$
3 $15 \mathrm{~kJ}$
4 $10 \mathrm{~kJ}$
Work, Energy and Power

148795 A force of $2 \hat{i}+3 \hat{j}+4 \hat{k} N$ acts on a body for 4 second, produces a displacement of $(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \mathbf{m}$. The power used is

1 $9.5 \mathrm{~W}$
2 $7.5 \mathrm{~W}$
3 $6.5 \mathrm{~W}$
4 $4.5 \mathrm{~W}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

148790 A metal chain of mass $2 \mathrm{~kg}$ and length $90 \mathrm{~cm}$ over hangs a table with $60 \mathrm{~cm}$ on the table. How much work needs to be done to put the hanging part of the chain back on the table? (Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $1 \mathrm{~J}$
4 $3 \mathrm{~J}$
Work, Energy and Power

148792 A force $F$ acting on a body depends on its displacement $\mathrm{S}$ as $\mathrm{F} \propto \mathrm{S}^{-1 / 3}$. The power delivered by $F$ will depend on displacement as

1 $\mathrm{S}^{2 / 3}$
2 $\mathrm{S}^{-5 / 3}$
3 $\mathrm{S}^{1 / 2}$
4 $\mathrm{S}^{0}$
Work, Energy and Power

148793 A block of mass $48 \mathrm{~kg}$ kept on a smooth horizontal surface is pulled by a rope of length $4 \mathrm{~m}$ by a horizontal force of $25 \mathrm{~N}$ applied to the other end. If the linear density of the rope is 0.5 $\mathrm{kg} \mathrm{m}^{-3}$, the force acting on the block is

1 $24 \mathrm{~N}$
2 $25 \mathrm{~N}$
3 $12 \mathrm{~N}$
4 $13 \mathrm{~N}$
Work, Energy and Power

148794 A man drags a block through $10 \mathrm{~m}$ on rough surface $(\mu=0.5)$. A force of $\sqrt{3} \mathrm{kN}$ acting at $30^{\circ}$ to the horizontal. The work done by applied force is

1 Zero
2 $7.5 \mathrm{~kJ}$
3 $15 \mathrm{~kJ}$
4 $10 \mathrm{~kJ}$
Work, Energy and Power

148795 A force of $2 \hat{i}+3 \hat{j}+4 \hat{k} N$ acts on a body for 4 second, produces a displacement of $(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \mathbf{m}$. The power used is

1 $9.5 \mathrm{~W}$
2 $7.5 \mathrm{~W}$
3 $6.5 \mathrm{~W}$
4 $4.5 \mathrm{~W}$
Work, Energy and Power

148790 A metal chain of mass $2 \mathrm{~kg}$ and length $90 \mathrm{~cm}$ over hangs a table with $60 \mathrm{~cm}$ on the table. How much work needs to be done to put the hanging part of the chain back on the table? (Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $1 \mathrm{~J}$
4 $3 \mathrm{~J}$
Work, Energy and Power

148792 A force $F$ acting on a body depends on its displacement $\mathrm{S}$ as $\mathrm{F} \propto \mathrm{S}^{-1 / 3}$. The power delivered by $F$ will depend on displacement as

1 $\mathrm{S}^{2 / 3}$
2 $\mathrm{S}^{-5 / 3}$
3 $\mathrm{S}^{1 / 2}$
4 $\mathrm{S}^{0}$
Work, Energy and Power

148793 A block of mass $48 \mathrm{~kg}$ kept on a smooth horizontal surface is pulled by a rope of length $4 \mathrm{~m}$ by a horizontal force of $25 \mathrm{~N}$ applied to the other end. If the linear density of the rope is 0.5 $\mathrm{kg} \mathrm{m}^{-3}$, the force acting on the block is

1 $24 \mathrm{~N}$
2 $25 \mathrm{~N}$
3 $12 \mathrm{~N}$
4 $13 \mathrm{~N}$
Work, Energy and Power

148794 A man drags a block through $10 \mathrm{~m}$ on rough surface $(\mu=0.5)$. A force of $\sqrt{3} \mathrm{kN}$ acting at $30^{\circ}$ to the horizontal. The work done by applied force is

1 Zero
2 $7.5 \mathrm{~kJ}$
3 $15 \mathrm{~kJ}$
4 $10 \mathrm{~kJ}$
Work, Energy and Power

148795 A force of $2 \hat{i}+3 \hat{j}+4 \hat{k} N$ acts on a body for 4 second, produces a displacement of $(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \mathbf{m}$. The power used is

1 $9.5 \mathrm{~W}$
2 $7.5 \mathrm{~W}$
3 $6.5 \mathrm{~W}$
4 $4.5 \mathrm{~W}$
Work, Energy and Power

148790 A metal chain of mass $2 \mathrm{~kg}$ and length $90 \mathrm{~cm}$ over hangs a table with $60 \mathrm{~cm}$ on the table. How much work needs to be done to put the hanging part of the chain back on the table? (Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $2 \mathrm{~J}$
2 $10 \mathrm{~J}$
3 $1 \mathrm{~J}$
4 $3 \mathrm{~J}$
Work, Energy and Power

148792 A force $F$ acting on a body depends on its displacement $\mathrm{S}$ as $\mathrm{F} \propto \mathrm{S}^{-1 / 3}$. The power delivered by $F$ will depend on displacement as

1 $\mathrm{S}^{2 / 3}$
2 $\mathrm{S}^{-5 / 3}$
3 $\mathrm{S}^{1 / 2}$
4 $\mathrm{S}^{0}$
Work, Energy and Power

148793 A block of mass $48 \mathrm{~kg}$ kept on a smooth horizontal surface is pulled by a rope of length $4 \mathrm{~m}$ by a horizontal force of $25 \mathrm{~N}$ applied to the other end. If the linear density of the rope is 0.5 $\mathrm{kg} \mathrm{m}^{-3}$, the force acting on the block is

1 $24 \mathrm{~N}$
2 $25 \mathrm{~N}$
3 $12 \mathrm{~N}$
4 $13 \mathrm{~N}$
Work, Energy and Power

148794 A man drags a block through $10 \mathrm{~m}$ on rough surface $(\mu=0.5)$. A force of $\sqrt{3} \mathrm{kN}$ acting at $30^{\circ}$ to the horizontal. The work done by applied force is

1 Zero
2 $7.5 \mathrm{~kJ}$
3 $15 \mathrm{~kJ}$
4 $10 \mathrm{~kJ}$
Work, Energy and Power

148795 A force of $2 \hat{i}+3 \hat{j}+4 \hat{k} N$ acts on a body for 4 second, produces a displacement of $(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \mathbf{m}$. The power used is

1 $9.5 \mathrm{~W}$
2 $7.5 \mathrm{~W}$
3 $6.5 \mathrm{~W}$
4 $4.5 \mathrm{~W}$