00. Scalar and Vector Quantities
Motion in Plane

143644 A body constrianed to move along the \(z\)-axis of a co-ordinate system is subject to a constant force \(\overrightarrow{\mathbf{F}}\) given by \(\overrightarrow{\mathbf{F}}=(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \mathbf{N}\). The work done by this force in moving the body a distance \(4 \mathbf{m}\) along the \(\mathrm{z}\)-axis is.

1 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}) \mathrm{N}\)
2 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}) \mathrm{N}\)
3 \(12 \mathrm{~N}\)
4 \(12 \hat{\mathrm{k} N}\)
Motion in Plane

143645 The sum of three vectors in the figure below is zero. The magnitude of \(\overrightarrow{\mathrm{OC}}\) and \(\overrightarrow{\mathrm{OB}}\) is

1 \(5 \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
2 \(5 \mathrm{~m}, 5 \mathrm{~m}\)
3 \(5 \sqrt{2} \mathrm{~m}, 5 \mathrm{~m}\)
4 \(5 \sqrt{2} \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
Motion in Plane

143646 The unit vector perpendicular to the plane of \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{B}}=\mathbf{2} \overrightarrow{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\) is

1 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
2 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
3 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
4 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
Motion in Plane

143647 The angle between two vectors \(x\) and \(y\) is \(\theta\). If the resultant vector \(z\) makes an angle \(\theta / 2\) with \(x\), then which of the following is true?

1 \(x=2 y\)
2 \(x=y\)
3 \(x=2 y+1\)
4 \(x=\frac{y}{2}\)
Motion in Plane

143648 The resultant of three vectors \(\vec{A}(2 \hat{i}-\hat{j}+3 \hat{k}), \vec{B}(3 \hat{i}-2 \hat{j}-2 \hat{k})\) and \(\vec{C}\) is a unit vector along \(\vec{z}\) direction is given by

1 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}\)
2 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{k}}\)
3 \(\overrightarrow{\mathrm{C}}=5 \hat{\mathrm{i}}+\hat{\mathrm{k}}\)
4 \(\overrightarrow{\mathrm{C}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\)
Motion in Plane

143644 A body constrianed to move along the \(z\)-axis of a co-ordinate system is subject to a constant force \(\overrightarrow{\mathbf{F}}\) given by \(\overrightarrow{\mathbf{F}}=(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \mathbf{N}\). The work done by this force in moving the body a distance \(4 \mathbf{m}\) along the \(\mathrm{z}\)-axis is.

1 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}) \mathrm{N}\)
2 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}) \mathrm{N}\)
3 \(12 \mathrm{~N}\)
4 \(12 \hat{\mathrm{k} N}\)
Motion in Plane

143645 The sum of three vectors in the figure below is zero. The magnitude of \(\overrightarrow{\mathrm{OC}}\) and \(\overrightarrow{\mathrm{OB}}\) is

1 \(5 \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
2 \(5 \mathrm{~m}, 5 \mathrm{~m}\)
3 \(5 \sqrt{2} \mathrm{~m}, 5 \mathrm{~m}\)
4 \(5 \sqrt{2} \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
Motion in Plane

143646 The unit vector perpendicular to the plane of \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{B}}=\mathbf{2} \overrightarrow{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\) is

1 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
2 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
3 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
4 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
Motion in Plane

143647 The angle between two vectors \(x\) and \(y\) is \(\theta\). If the resultant vector \(z\) makes an angle \(\theta / 2\) with \(x\), then which of the following is true?

1 \(x=2 y\)
2 \(x=y\)
3 \(x=2 y+1\)
4 \(x=\frac{y}{2}\)
Motion in Plane

143648 The resultant of three vectors \(\vec{A}(2 \hat{i}-\hat{j}+3 \hat{k}), \vec{B}(3 \hat{i}-2 \hat{j}-2 \hat{k})\) and \(\vec{C}\) is a unit vector along \(\vec{z}\) direction is given by

1 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}\)
2 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{k}}\)
3 \(\overrightarrow{\mathrm{C}}=5 \hat{\mathrm{i}}+\hat{\mathrm{k}}\)
4 \(\overrightarrow{\mathrm{C}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\)
Motion in Plane

143644 A body constrianed to move along the \(z\)-axis of a co-ordinate system is subject to a constant force \(\overrightarrow{\mathbf{F}}\) given by \(\overrightarrow{\mathbf{F}}=(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \mathbf{N}\). The work done by this force in moving the body a distance \(4 \mathbf{m}\) along the \(\mathrm{z}\)-axis is.

1 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}) \mathrm{N}\)
2 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}) \mathrm{N}\)
3 \(12 \mathrm{~N}\)
4 \(12 \hat{\mathrm{k} N}\)
Motion in Plane

143645 The sum of three vectors in the figure below is zero. The magnitude of \(\overrightarrow{\mathrm{OC}}\) and \(\overrightarrow{\mathrm{OB}}\) is

1 \(5 \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
2 \(5 \mathrm{~m}, 5 \mathrm{~m}\)
3 \(5 \sqrt{2} \mathrm{~m}, 5 \mathrm{~m}\)
4 \(5 \sqrt{2} \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
Motion in Plane

143646 The unit vector perpendicular to the plane of \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{B}}=\mathbf{2} \overrightarrow{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\) is

1 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
2 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
3 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
4 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
Motion in Plane

143647 The angle between two vectors \(x\) and \(y\) is \(\theta\). If the resultant vector \(z\) makes an angle \(\theta / 2\) with \(x\), then which of the following is true?

1 \(x=2 y\)
2 \(x=y\)
3 \(x=2 y+1\)
4 \(x=\frac{y}{2}\)
Motion in Plane

143648 The resultant of three vectors \(\vec{A}(2 \hat{i}-\hat{j}+3 \hat{k}), \vec{B}(3 \hat{i}-2 \hat{j}-2 \hat{k})\) and \(\vec{C}\) is a unit vector along \(\vec{z}\) direction is given by

1 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}\)
2 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{k}}\)
3 \(\overrightarrow{\mathrm{C}}=5 \hat{\mathrm{i}}+\hat{\mathrm{k}}\)
4 \(\overrightarrow{\mathrm{C}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in Plane

143644 A body constrianed to move along the \(z\)-axis of a co-ordinate system is subject to a constant force \(\overrightarrow{\mathbf{F}}\) given by \(\overrightarrow{\mathbf{F}}=(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \mathbf{N}\). The work done by this force in moving the body a distance \(4 \mathbf{m}\) along the \(\mathrm{z}\)-axis is.

1 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}) \mathrm{N}\)
2 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}) \mathrm{N}\)
3 \(12 \mathrm{~N}\)
4 \(12 \hat{\mathrm{k} N}\)
Motion in Plane

143645 The sum of three vectors in the figure below is zero. The magnitude of \(\overrightarrow{\mathrm{OC}}\) and \(\overrightarrow{\mathrm{OB}}\) is

1 \(5 \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
2 \(5 \mathrm{~m}, 5 \mathrm{~m}\)
3 \(5 \sqrt{2} \mathrm{~m}, 5 \mathrm{~m}\)
4 \(5 \sqrt{2} \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
Motion in Plane

143646 The unit vector perpendicular to the plane of \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{B}}=\mathbf{2} \overrightarrow{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\) is

1 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
2 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
3 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
4 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
Motion in Plane

143647 The angle between two vectors \(x\) and \(y\) is \(\theta\). If the resultant vector \(z\) makes an angle \(\theta / 2\) with \(x\), then which of the following is true?

1 \(x=2 y\)
2 \(x=y\)
3 \(x=2 y+1\)
4 \(x=\frac{y}{2}\)
Motion in Plane

143648 The resultant of three vectors \(\vec{A}(2 \hat{i}-\hat{j}+3 \hat{k}), \vec{B}(3 \hat{i}-2 \hat{j}-2 \hat{k})\) and \(\vec{C}\) is a unit vector along \(\vec{z}\) direction is given by

1 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}\)
2 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{k}}\)
3 \(\overrightarrow{\mathrm{C}}=5 \hat{\mathrm{i}}+\hat{\mathrm{k}}\)
4 \(\overrightarrow{\mathrm{C}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\)
Motion in Plane

143644 A body constrianed to move along the \(z\)-axis of a co-ordinate system is subject to a constant force \(\overrightarrow{\mathbf{F}}\) given by \(\overrightarrow{\mathbf{F}}=(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}) \mathbf{N}\). The work done by this force in moving the body a distance \(4 \mathbf{m}\) along the \(\mathrm{z}\)-axis is.

1 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}) \mathrm{N}\)
2 \((-4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}) \mathrm{N}\)
3 \(12 \mathrm{~N}\)
4 \(12 \hat{\mathrm{k} N}\)
Motion in Plane

143645 The sum of three vectors in the figure below is zero. The magnitude of \(\overrightarrow{\mathrm{OC}}\) and \(\overrightarrow{\mathrm{OB}}\) is

1 \(5 \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
2 \(5 \mathrm{~m}, 5 \mathrm{~m}\)
3 \(5 \sqrt{2} \mathrm{~m}, 5 \mathrm{~m}\)
4 \(5 \sqrt{2} \mathrm{~m}, 5 \sqrt{2} \mathrm{~m}\)
Motion in Plane

143646 The unit vector perpendicular to the plane of \(\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}-\mathbf{3} \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{B}}=\mathbf{2} \overrightarrow{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}\) is

1 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
2 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}-\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
3 \(\frac{4}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{7}{\sqrt{66}} \hat{\mathrm{k}}\)
4 \(\frac{2}{\sqrt{66}} \hat{\mathrm{i}}+\frac{1}{\sqrt{66}} \hat{\mathrm{j}}+\frac{8}{\sqrt{66}} \hat{\mathrm{k}}\)
Motion in Plane

143647 The angle between two vectors \(x\) and \(y\) is \(\theta\). If the resultant vector \(z\) makes an angle \(\theta / 2\) with \(x\), then which of the following is true?

1 \(x=2 y\)
2 \(x=y\)
3 \(x=2 y+1\)
4 \(x=\frac{y}{2}\)
Motion in Plane

143648 The resultant of three vectors \(\vec{A}(2 \hat{i}-\hat{j}+3 \hat{k}), \vec{B}(3 \hat{i}-2 \hat{j}-2 \hat{k})\) and \(\vec{C}\) is a unit vector along \(\vec{z}\) direction is given by

1 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}\)
2 \(\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{k}}\)
3 \(\overrightarrow{\mathrm{C}}=5 \hat{\mathrm{i}}+\hat{\mathrm{k}}\)
4 \(\overrightarrow{\mathrm{C}}=-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\)