143640
Let \(\left|\overrightarrow{\mathrm{A}}_{1}\right|=3,\left|\overrightarrow{\mathrm{A}}_{2}\right|=5\) and
\(\left|\vec{A}_{1}+\vec{A}_{2}\right|=5\). The value of
\(\left(\mathbf{2} \vec{A}_{1}+\mathbf{3} \vec{A}_{2}\right) \cdot\left(3 \vec{A}_{1}-\mathbf{2} \vec{A}_{2}\right)\) is
143640
Let \(\left|\overrightarrow{\mathrm{A}}_{1}\right|=3,\left|\overrightarrow{\mathrm{A}}_{2}\right|=5\) and
\(\left|\vec{A}_{1}+\vec{A}_{2}\right|=5\). The value of
\(\left(\mathbf{2} \vec{A}_{1}+\mathbf{3} \vec{A}_{2}\right) \cdot\left(3 \vec{A}_{1}-\mathbf{2} \vec{A}_{2}\right)\) is
143640
Let \(\left|\overrightarrow{\mathrm{A}}_{1}\right|=3,\left|\overrightarrow{\mathrm{A}}_{2}\right|=5\) and
\(\left|\vec{A}_{1}+\vec{A}_{2}\right|=5\). The value of
\(\left(\mathbf{2} \vec{A}_{1}+\mathbf{3} \vec{A}_{2}\right) \cdot\left(3 \vec{A}_{1}-\mathbf{2} \vec{A}_{2}\right)\) is
143640
Let \(\left|\overrightarrow{\mathrm{A}}_{1}\right|=3,\left|\overrightarrow{\mathrm{A}}_{2}\right|=5\) and
\(\left|\vec{A}_{1}+\vec{A}_{2}\right|=5\). The value of
\(\left(\mathbf{2} \vec{A}_{1}+\mathbf{3} \vec{A}_{2}\right) \cdot\left(3 \vec{A}_{1}-\mathbf{2} \vec{A}_{2}\right)\) is