143640 Let |A→1|=3,|A→2|=5 and|A→1+A→2|=5. The value of(2A→1+3A→2)⋅(3A→1−2A→2) is
D Given that|A→1|=3,|A→2|=5,|A→1+A→2|=5|A→1+A→2|=|A→1|2+|A→2|2+2|A→1||A→2|cosθ 5=(3)2+(5)2+2×3×5cosθ5=9+25+2×3×5cosθSquaring both side25=9+25+2×3×5cosθcosθ=−92×3×5cosθ=−310(2A→1+3A→2)⋅(3A→1−2A→2)=6|A→1|2+9A→1⋅A→2−4A→1⋅A→2−6|A→2|2=6(3)2+9A→1⋅A→2−4A→1⋅A→2−6×25=54+5A→1⋅A→2−6×25=54+5|A→1||A→2|cosθ−150=54+5×3×5(−310)−150=54−150−452=−118.5
143641 In the cube of side ' a ' shown in the figure, the vector from the central point of the face ABOD to the central point of the face BEFO will be
B Position vector of G is, G(a2,0,a2)OG→=a2i^+a2k^Position vector of H is, H(0,a2,a2)OH→=a2j^+a2k^GH→=OH→−OG→GH→=(a2j^+a2k^)−(a2i^+a2k^)GH→=a2(j^−i^)
143642 If A→×B→=B→×A→, then the angle between A and B is
A A→×B→=B→×A→A→×B→=−(A→×B→)ABsinθ=−ABsinθ2ABsinθ=0sinθ=0θ=0,π,2π
143643 A→=3i^+4j^+2k^,B→=6i^−j^+3k^ Find a vector parallel to A¯ whose magnitude equal to that of B―
A Givne that,A→=3i^+4j^+2k^B→=6i^−j^+3k^Let X be the vector parallel to A→ whose magnitude is equal to that of B→X→=A→|B→||A→|=3i^+4j^+2k^9+16+436+1+9X→=4629(3i^+4j^+2k^)