00. Scalar and Vector Quantities
Motion in Plane

143625 A particle is moving such that its position coordinates \((x, y)\) are \((2 m, 3 m)\) at time \(t=0,(6 m\), \(7 \mathrm{~m})\) at time \(t=2 \mathrm{~s}\) and \((13 \mathrm{~m}, 14 \mathrm{~m})\) at time \(t=5\) s. Average velocity vector \(\left(v_{a v}\right)\) from \(t=0\) to \(t=\) \(5 \mathrm{~s}\) is

1 \(\frac{1}{5}(13 \hat{\mathrm{i}}+14 \hat{\mathrm{j}})\)
2 \(\frac{7}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
3 \(2(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\frac{11}{5}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143626 If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(180^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143627 If vectors \(\mathbf{A}=\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}} \quad\) and \(B=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}\) are functions of time, then the value of \(t\) at which they are orthogonal to each other, is

1 \(t=\frac{\pi}{4 \omega}\)
2 \(\mathrm{t}=\frac{\pi}{2 \omega}\)
3 \(\mathrm{t}=\frac{\pi}{\omega}\)
4 \(t=0\)
Motion in Plane

143629 If \(|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=\sqrt{3} \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}\) then the value of \(|\mathbf{A}+\mathbf{B}|\) is

1 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{AB}\right)^{1 / 2}\)
2 \(\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\sqrt{3} \mathrm{AB}\right)^{1 / 2}\)
Motion in Plane

143630 If a vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}\) is perpendicular to the vector \(4 \hat{j}-4 \hat{i}+\alpha \hat{k}\), then the value of \(\alpha\) is

1 -1
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 1
Motion in Plane

143625 A particle is moving such that its position coordinates \((x, y)\) are \((2 m, 3 m)\) at time \(t=0,(6 m\), \(7 \mathrm{~m})\) at time \(t=2 \mathrm{~s}\) and \((13 \mathrm{~m}, 14 \mathrm{~m})\) at time \(t=5\) s. Average velocity vector \(\left(v_{a v}\right)\) from \(t=0\) to \(t=\) \(5 \mathrm{~s}\) is

1 \(\frac{1}{5}(13 \hat{\mathrm{i}}+14 \hat{\mathrm{j}})\)
2 \(\frac{7}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
3 \(2(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\frac{11}{5}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143626 If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(180^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143627 If vectors \(\mathbf{A}=\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}} \quad\) and \(B=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}\) are functions of time, then the value of \(t\) at which they are orthogonal to each other, is

1 \(t=\frac{\pi}{4 \omega}\)
2 \(\mathrm{t}=\frac{\pi}{2 \omega}\)
3 \(\mathrm{t}=\frac{\pi}{\omega}\)
4 \(t=0\)
Motion in Plane

143629 If \(|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=\sqrt{3} \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}\) then the value of \(|\mathbf{A}+\mathbf{B}|\) is

1 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{AB}\right)^{1 / 2}\)
2 \(\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\sqrt{3} \mathrm{AB}\right)^{1 / 2}\)
Motion in Plane

143630 If a vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}\) is perpendicular to the vector \(4 \hat{j}-4 \hat{i}+\alpha \hat{k}\), then the value of \(\alpha\) is

1 -1
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 1
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in Plane

143625 A particle is moving such that its position coordinates \((x, y)\) are \((2 m, 3 m)\) at time \(t=0,(6 m\), \(7 \mathrm{~m})\) at time \(t=2 \mathrm{~s}\) and \((13 \mathrm{~m}, 14 \mathrm{~m})\) at time \(t=5\) s. Average velocity vector \(\left(v_{a v}\right)\) from \(t=0\) to \(t=\) \(5 \mathrm{~s}\) is

1 \(\frac{1}{5}(13 \hat{\mathrm{i}}+14 \hat{\mathrm{j}})\)
2 \(\frac{7}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
3 \(2(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\frac{11}{5}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143626 If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(180^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143627 If vectors \(\mathbf{A}=\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}} \quad\) and \(B=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}\) are functions of time, then the value of \(t\) at which they are orthogonal to each other, is

1 \(t=\frac{\pi}{4 \omega}\)
2 \(\mathrm{t}=\frac{\pi}{2 \omega}\)
3 \(\mathrm{t}=\frac{\pi}{\omega}\)
4 \(t=0\)
Motion in Plane

143629 If \(|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=\sqrt{3} \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}\) then the value of \(|\mathbf{A}+\mathbf{B}|\) is

1 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{AB}\right)^{1 / 2}\)
2 \(\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\sqrt{3} \mathrm{AB}\right)^{1 / 2}\)
Motion in Plane

143630 If a vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}\) is perpendicular to the vector \(4 \hat{j}-4 \hat{i}+\alpha \hat{k}\), then the value of \(\alpha\) is

1 -1
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 1
Motion in Plane

143625 A particle is moving such that its position coordinates \((x, y)\) are \((2 m, 3 m)\) at time \(t=0,(6 m\), \(7 \mathrm{~m})\) at time \(t=2 \mathrm{~s}\) and \((13 \mathrm{~m}, 14 \mathrm{~m})\) at time \(t=5\) s. Average velocity vector \(\left(v_{a v}\right)\) from \(t=0\) to \(t=\) \(5 \mathrm{~s}\) is

1 \(\frac{1}{5}(13 \hat{\mathrm{i}}+14 \hat{\mathrm{j}})\)
2 \(\frac{7}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
3 \(2(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\frac{11}{5}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143626 If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(180^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143627 If vectors \(\mathbf{A}=\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}} \quad\) and \(B=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}\) are functions of time, then the value of \(t\) at which they are orthogonal to each other, is

1 \(t=\frac{\pi}{4 \omega}\)
2 \(\mathrm{t}=\frac{\pi}{2 \omega}\)
3 \(\mathrm{t}=\frac{\pi}{\omega}\)
4 \(t=0\)
Motion in Plane

143629 If \(|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=\sqrt{3} \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}\) then the value of \(|\mathbf{A}+\mathbf{B}|\) is

1 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{AB}\right)^{1 / 2}\)
2 \(\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\sqrt{3} \mathrm{AB}\right)^{1 / 2}\)
Motion in Plane

143630 If a vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}\) is perpendicular to the vector \(4 \hat{j}-4 \hat{i}+\alpha \hat{k}\), then the value of \(\alpha\) is

1 -1
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 1
Motion in Plane

143625 A particle is moving such that its position coordinates \((x, y)\) are \((2 m, 3 m)\) at time \(t=0,(6 m\), \(7 \mathrm{~m})\) at time \(t=2 \mathrm{~s}\) and \((13 \mathrm{~m}, 14 \mathrm{~m})\) at time \(t=5\) s. Average velocity vector \(\left(v_{a v}\right)\) from \(t=0\) to \(t=\) \(5 \mathrm{~s}\) is

1 \(\frac{1}{5}(13 \hat{\mathrm{i}}+14 \hat{\mathrm{j}})\)
2 \(\frac{7}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
3 \(2(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\frac{11}{5}(\hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143626 If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(180^{\circ}\)
4 \(0^{\circ}\)
Motion in Plane

143627 If vectors \(\mathbf{A}=\cos \omega t \hat{\mathbf{i}}+\sin \omega t \hat{\mathbf{j}} \quad\) and \(B=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}\) are functions of time, then the value of \(t\) at which they are orthogonal to each other, is

1 \(t=\frac{\pi}{4 \omega}\)
2 \(\mathrm{t}=\frac{\pi}{2 \omega}\)
3 \(\mathrm{t}=\frac{\pi}{\omega}\)
4 \(t=0\)
Motion in Plane

143629 If \(|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=\sqrt{3} \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}\) then the value of \(|\mathbf{A}+\mathbf{B}|\) is

1 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{AB}\right)^{1 / 2}\)
2 \(\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}\)
3 \(\mathrm{A}+\mathrm{B}\)
4 \(\left(\mathrm{A}^{2}+\mathrm{B}^{2}+\sqrt{3} \mathrm{AB}\right)^{1 / 2}\)
Motion in Plane

143630 If a vector \(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+8 \hat{\mathbf{k}}\) is perpendicular to the vector \(4 \hat{j}-4 \hat{i}+\alpha \hat{k}\), then the value of \(\alpha\) is

1 -1
2 \(\frac{1}{2}\)
3 \(-\frac{1}{2}\)
4 1