00. Scalar and Vector Quantities
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in Plane

143631 If a unit vector is represented by \(0.5 \hat{i}+0.8 \hat{j}+c \hat{k}\), then the value of \(c\) is

1 1
2 \(\sqrt{0.11}\)
3 \(\sqrt{0.01}\)
4 0.39
Motion in Plane

143633 The angle between the two vectors \(A=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(B=3 \hat{i}+4 \hat{j}-5 \hat{k}\) will be

1 \(0^{\circ}\)
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)
Motion in Plane

143634 The angle between \(\vec{A}\) and \(\vec{B}\) is \(\theta\). The value of the triple product \(\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}})\) is

1 \(A^{2} B\)
2 zero
3 \(\mathrm{A}^{2} \mathrm{~B} \sin \theta\)
4 \(\mathrm{A}^{2} \mathrm{~B} \cos \theta\)
Motion in Plane

143635 \(\overrightarrow{\mathbf{A}}\) is a vector quantity such that \(|\overrightarrow{\mathbf{A}}|=\) non-zero constant. Which of the following expression is true for \(\overrightarrow{\mathbf{A}}\) ?

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=0\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}} \lt 0\)
3 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}=0\)
4 \(\vec{A} \times \vec{A}>0\)
Motion in Plane

143631 If a unit vector is represented by \(0.5 \hat{i}+0.8 \hat{j}+c \hat{k}\), then the value of \(c\) is

1 1
2 \(\sqrt{0.11}\)
3 \(\sqrt{0.01}\)
4 0.39
Motion in Plane

143633 The angle between the two vectors \(A=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(B=3 \hat{i}+4 \hat{j}-5 \hat{k}\) will be

1 \(0^{\circ}\)
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)
Motion in Plane

143634 The angle between \(\vec{A}\) and \(\vec{B}\) is \(\theta\). The value of the triple product \(\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}})\) is

1 \(A^{2} B\)
2 zero
3 \(\mathrm{A}^{2} \mathrm{~B} \sin \theta\)
4 \(\mathrm{A}^{2} \mathrm{~B} \cos \theta\)
Motion in Plane

143635 \(\overrightarrow{\mathbf{A}}\) is a vector quantity such that \(|\overrightarrow{\mathbf{A}}|=\) non-zero constant. Which of the following expression is true for \(\overrightarrow{\mathbf{A}}\) ?

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=0\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}} \lt 0\)
3 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}=0\)
4 \(\vec{A} \times \vec{A}>0\)
Motion in Plane

143631 If a unit vector is represented by \(0.5 \hat{i}+0.8 \hat{j}+c \hat{k}\), then the value of \(c\) is

1 1
2 \(\sqrt{0.11}\)
3 \(\sqrt{0.01}\)
4 0.39
Motion in Plane

143633 The angle between the two vectors \(A=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(B=3 \hat{i}+4 \hat{j}-5 \hat{k}\) will be

1 \(0^{\circ}\)
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)
Motion in Plane

143634 The angle between \(\vec{A}\) and \(\vec{B}\) is \(\theta\). The value of the triple product \(\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}})\) is

1 \(A^{2} B\)
2 zero
3 \(\mathrm{A}^{2} \mathrm{~B} \sin \theta\)
4 \(\mathrm{A}^{2} \mathrm{~B} \cos \theta\)
Motion in Plane

143635 \(\overrightarrow{\mathbf{A}}\) is a vector quantity such that \(|\overrightarrow{\mathbf{A}}|=\) non-zero constant. Which of the following expression is true for \(\overrightarrow{\mathbf{A}}\) ?

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=0\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}} \lt 0\)
3 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}=0\)
4 \(\vec{A} \times \vec{A}>0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in Plane

143631 If a unit vector is represented by \(0.5 \hat{i}+0.8 \hat{j}+c \hat{k}\), then the value of \(c\) is

1 1
2 \(\sqrt{0.11}\)
3 \(\sqrt{0.01}\)
4 0.39
Motion in Plane

143633 The angle between the two vectors \(A=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(B=3 \hat{i}+4 \hat{j}-5 \hat{k}\) will be

1 \(0^{\circ}\)
2 \(45^{\circ}\)
3 \(90^{\circ}\)
4 \(180^{\circ}\)
Motion in Plane

143634 The angle between \(\vec{A}\) and \(\vec{B}\) is \(\theta\). The value of the triple product \(\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}})\) is

1 \(A^{2} B\)
2 zero
3 \(\mathrm{A}^{2} \mathrm{~B} \sin \theta\)
4 \(\mathrm{A}^{2} \mathrm{~B} \cos \theta\)
Motion in Plane

143635 \(\overrightarrow{\mathbf{A}}\) is a vector quantity such that \(|\overrightarrow{\mathbf{A}}|=\) non-zero constant. Which of the following expression is true for \(\overrightarrow{\mathbf{A}}\) ?

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=0\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}} \lt 0\)
3 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}=0\)
4 \(\vec{A} \times \vec{A}>0\)