00. Scalar and Vector Quantities
Motion in Plane

143616 A body is rotating with angular velocity \(\omega=(3 \hat{i}-4 \hat{j}+\hat{k})\). The linear velocity of a point having position vector \(r=(5 \hat{i}-6 \hat{j}+6 \hat{k})\) is

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(18 \hat{i}+13 \hat{j}-2 \hat{k}\)
3 \(-18 \hat{i}-13 \hat{j}+2 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
Motion in Plane

143617 The vectors \(\vec{A}, \vec{B}\) and \(\vec{C}\) are such that \(|\overrightarrow{\mathbf{A}}|=|\overrightarrow{\mathbf{B}}|,|\overrightarrow{\mathbf{C}}|=\sqrt{2}|\overrightarrow{\mathbf{A}}|\) and \(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\mathbf{0}\). The angles between \(\vec{A}\) and \(\vec{B}, \vec{B}\) and \(\vec{C}\) respectively are

1 \(45^{\circ}, 90^{\circ}\)
2 \(90^{\circ}, 135^{\circ}\)
3 \(90^{\circ}, 45^{\circ}\)
4 \(45^{\circ}, 135^{\circ}\)
Motion in Plane

143618 An ant starts from the origin and crawls \(10 \mathrm{~cm}\) along the \(x-\) axis and then \(20 \mathrm{~cm}\) along the \(y-\) axis. The dot product of the ant's displacement vector with the position vector of a point that makes \(45^{\circ}\) with the \(x\) - axis and has a magnitude of \(\sqrt{2} \mathrm{~cm}\) is

1 \(30 \mathrm{~cm}\)
2 \(30 \sqrt{2} \mathrm{~cm}\)
3 \(\frac{30}{\sqrt{2}} \mathrm{~cm}\)
4 \(15 \mathrm{~cm}\)
Motion in Plane

143622 Find the angle between the two vectors: \(\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}, \vec{b}=5 \hat{i}+3 \hat{j}+\hat{k}\)

1 \(\cos ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
2 \(\sin ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
3 \(\cos ^{-1}\left(\frac{26}{\sqrt{1335}}\right)\)
4 \(\tan ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
Motion in Plane

143616 A body is rotating with angular velocity \(\omega=(3 \hat{i}-4 \hat{j}+\hat{k})\). The linear velocity of a point having position vector \(r=(5 \hat{i}-6 \hat{j}+6 \hat{k})\) is

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(18 \hat{i}+13 \hat{j}-2 \hat{k}\)
3 \(-18 \hat{i}-13 \hat{j}+2 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
Motion in Plane

143617 The vectors \(\vec{A}, \vec{B}\) and \(\vec{C}\) are such that \(|\overrightarrow{\mathbf{A}}|=|\overrightarrow{\mathbf{B}}|,|\overrightarrow{\mathbf{C}}|=\sqrt{2}|\overrightarrow{\mathbf{A}}|\) and \(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\mathbf{0}\). The angles between \(\vec{A}\) and \(\vec{B}, \vec{B}\) and \(\vec{C}\) respectively are

1 \(45^{\circ}, 90^{\circ}\)
2 \(90^{\circ}, 135^{\circ}\)
3 \(90^{\circ}, 45^{\circ}\)
4 \(45^{\circ}, 135^{\circ}\)
Motion in Plane

143618 An ant starts from the origin and crawls \(10 \mathrm{~cm}\) along the \(x-\) axis and then \(20 \mathrm{~cm}\) along the \(y-\) axis. The dot product of the ant's displacement vector with the position vector of a point that makes \(45^{\circ}\) with the \(x\) - axis and has a magnitude of \(\sqrt{2} \mathrm{~cm}\) is

1 \(30 \mathrm{~cm}\)
2 \(30 \sqrt{2} \mathrm{~cm}\)
3 \(\frac{30}{\sqrt{2}} \mathrm{~cm}\)
4 \(15 \mathrm{~cm}\)
Motion in Plane

143622 Find the angle between the two vectors: \(\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}, \vec{b}=5 \hat{i}+3 \hat{j}+\hat{k}\)

1 \(\cos ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
2 \(\sin ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
3 \(\cos ^{-1}\left(\frac{26}{\sqrt{1335}}\right)\)
4 \(\tan ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
Motion in Plane

143616 A body is rotating with angular velocity \(\omega=(3 \hat{i}-4 \hat{j}+\hat{k})\). The linear velocity of a point having position vector \(r=(5 \hat{i}-6 \hat{j}+6 \hat{k})\) is

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(18 \hat{i}+13 \hat{j}-2 \hat{k}\)
3 \(-18 \hat{i}-13 \hat{j}+2 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
Motion in Plane

143617 The vectors \(\vec{A}, \vec{B}\) and \(\vec{C}\) are such that \(|\overrightarrow{\mathbf{A}}|=|\overrightarrow{\mathbf{B}}|,|\overrightarrow{\mathbf{C}}|=\sqrt{2}|\overrightarrow{\mathbf{A}}|\) and \(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\mathbf{0}\). The angles between \(\vec{A}\) and \(\vec{B}, \vec{B}\) and \(\vec{C}\) respectively are

1 \(45^{\circ}, 90^{\circ}\)
2 \(90^{\circ}, 135^{\circ}\)
3 \(90^{\circ}, 45^{\circ}\)
4 \(45^{\circ}, 135^{\circ}\)
Motion in Plane

143618 An ant starts from the origin and crawls \(10 \mathrm{~cm}\) along the \(x-\) axis and then \(20 \mathrm{~cm}\) along the \(y-\) axis. The dot product of the ant's displacement vector with the position vector of a point that makes \(45^{\circ}\) with the \(x\) - axis and has a magnitude of \(\sqrt{2} \mathrm{~cm}\) is

1 \(30 \mathrm{~cm}\)
2 \(30 \sqrt{2} \mathrm{~cm}\)
3 \(\frac{30}{\sqrt{2}} \mathrm{~cm}\)
4 \(15 \mathrm{~cm}\)
Motion in Plane

143622 Find the angle between the two vectors: \(\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}, \vec{b}=5 \hat{i}+3 \hat{j}+\hat{k}\)

1 \(\cos ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
2 \(\sin ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
3 \(\cos ^{-1}\left(\frac{26}{\sqrt{1335}}\right)\)
4 \(\tan ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
Motion in Plane

143616 A body is rotating with angular velocity \(\omega=(3 \hat{i}-4 \hat{j}+\hat{k})\). The linear velocity of a point having position vector \(r=(5 \hat{i}-6 \hat{j}+6 \hat{k})\) is

1 \(6 \hat{i}+2 \hat{j}-3 \hat{k}\)
2 \(18 \hat{i}+13 \hat{j}-2 \hat{k}\)
3 \(-18 \hat{i}-13 \hat{j}+2 \hat{k}\)
4 \(6 \hat{i}-2 \hat{j}+8 \hat{k}\)
Motion in Plane

143617 The vectors \(\vec{A}, \vec{B}\) and \(\vec{C}\) are such that \(|\overrightarrow{\mathbf{A}}|=|\overrightarrow{\mathbf{B}}|,|\overrightarrow{\mathbf{C}}|=\sqrt{2}|\overrightarrow{\mathbf{A}}|\) and \(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}}=\mathbf{0}\). The angles between \(\vec{A}\) and \(\vec{B}, \vec{B}\) and \(\vec{C}\) respectively are

1 \(45^{\circ}, 90^{\circ}\)
2 \(90^{\circ}, 135^{\circ}\)
3 \(90^{\circ}, 45^{\circ}\)
4 \(45^{\circ}, 135^{\circ}\)
Motion in Plane

143618 An ant starts from the origin and crawls \(10 \mathrm{~cm}\) along the \(x-\) axis and then \(20 \mathrm{~cm}\) along the \(y-\) axis. The dot product of the ant's displacement vector with the position vector of a point that makes \(45^{\circ}\) with the \(x\) - axis and has a magnitude of \(\sqrt{2} \mathrm{~cm}\) is

1 \(30 \mathrm{~cm}\)
2 \(30 \sqrt{2} \mathrm{~cm}\)
3 \(\frac{30}{\sqrt{2}} \mathrm{~cm}\)
4 \(15 \mathrm{~cm}\)
Motion in Plane

143622 Find the angle between the two vectors: \(\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}, \vec{b}=5 \hat{i}+3 \hat{j}+\hat{k}\)

1 \(\cos ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
2 \(\sin ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)
3 \(\cos ^{-1}\left(\frac{26}{\sqrt{1335}}\right)\)
4 \(\tan ^{-1}\left(\frac{26}{\sqrt{1330}}\right)\)