00. Scalar and Vector Quantities
Motion in Plane

143609 The angle subtended by the vector \(A=4 \hat{i}+\) \(3 \hat{\mathbf{j}}+12 \hat{\mathrm{k}}\) with \(\mathrm{x}\)-axis is

1 \(\sin ^{-1}\left(\frac{3}{13}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{13}\right)\)
3 \(\cos ^{-1}\left(\frac{4}{13}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{13}\right)\)
Motion in Plane

143611 If \(a_{1}\) and \(a_{2}\) are two non-collinear unit vectors and if \(\left|a_{1}+a_{2}\right|=\sqrt{3}\),
Then the value of \(\left(a_{1}-a_{2}\right) \cdot\left(2 a_{1}+a_{2}\right)\) is

1 2
2 \(\sqrt{3}\)
3 \(\frac{1}{2}\)
4 \(\vec{a}_{1}\), and \(\vec{a}_{2} 1\)
Motion in Plane

143612 Two vectors are perpendicular, if

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=1\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=0\)
3 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0\)
4 \(\vec{A} \times \vec{B}=\vec{A} \vec{B}\)
Motion in Plane

143615 If force \(\mathbf{F}=\mathbf{5} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) makes a displacement of \(s=6 \hat{i}-5 \hat{k}\) work done by the force is

1 10 units
2 \(122 \sqrt{5}\) units
3 \(5 \sqrt{122}\) units
4 20 units
Motion in Plane

143609 The angle subtended by the vector \(A=4 \hat{i}+\) \(3 \hat{\mathbf{j}}+12 \hat{\mathrm{k}}\) with \(\mathrm{x}\)-axis is

1 \(\sin ^{-1}\left(\frac{3}{13}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{13}\right)\)
3 \(\cos ^{-1}\left(\frac{4}{13}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{13}\right)\)
Motion in Plane

143611 If \(a_{1}\) and \(a_{2}\) are two non-collinear unit vectors and if \(\left|a_{1}+a_{2}\right|=\sqrt{3}\),
Then the value of \(\left(a_{1}-a_{2}\right) \cdot\left(2 a_{1}+a_{2}\right)\) is

1 2
2 \(\sqrt{3}\)
3 \(\frac{1}{2}\)
4 \(\vec{a}_{1}\), and \(\vec{a}_{2} 1\)
Motion in Plane

143612 Two vectors are perpendicular, if

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=1\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=0\)
3 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0\)
4 \(\vec{A} \times \vec{B}=\vec{A} \vec{B}\)
Motion in Plane

143615 If force \(\mathbf{F}=\mathbf{5} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) makes a displacement of \(s=6 \hat{i}-5 \hat{k}\) work done by the force is

1 10 units
2 \(122 \sqrt{5}\) units
3 \(5 \sqrt{122}\) units
4 20 units
Motion in Plane

143609 The angle subtended by the vector \(A=4 \hat{i}+\) \(3 \hat{\mathbf{j}}+12 \hat{\mathrm{k}}\) with \(\mathrm{x}\)-axis is

1 \(\sin ^{-1}\left(\frac{3}{13}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{13}\right)\)
3 \(\cos ^{-1}\left(\frac{4}{13}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{13}\right)\)
Motion in Plane

143611 If \(a_{1}\) and \(a_{2}\) are two non-collinear unit vectors and if \(\left|a_{1}+a_{2}\right|=\sqrt{3}\),
Then the value of \(\left(a_{1}-a_{2}\right) \cdot\left(2 a_{1}+a_{2}\right)\) is

1 2
2 \(\sqrt{3}\)
3 \(\frac{1}{2}\)
4 \(\vec{a}_{1}\), and \(\vec{a}_{2} 1\)
Motion in Plane

143612 Two vectors are perpendicular, if

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=1\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=0\)
3 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0\)
4 \(\vec{A} \times \vec{B}=\vec{A} \vec{B}\)
Motion in Plane

143615 If force \(\mathbf{F}=\mathbf{5} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) makes a displacement of \(s=6 \hat{i}-5 \hat{k}\) work done by the force is

1 10 units
2 \(122 \sqrt{5}\) units
3 \(5 \sqrt{122}\) units
4 20 units
Motion in Plane

143609 The angle subtended by the vector \(A=4 \hat{i}+\) \(3 \hat{\mathbf{j}}+12 \hat{\mathrm{k}}\) with \(\mathrm{x}\)-axis is

1 \(\sin ^{-1}\left(\frac{3}{13}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{13}\right)\)
3 \(\cos ^{-1}\left(\frac{4}{13}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{13}\right)\)
Motion in Plane

143611 If \(a_{1}\) and \(a_{2}\) are two non-collinear unit vectors and if \(\left|a_{1}+a_{2}\right|=\sqrt{3}\),
Then the value of \(\left(a_{1}-a_{2}\right) \cdot\left(2 a_{1}+a_{2}\right)\) is

1 2
2 \(\sqrt{3}\)
3 \(\frac{1}{2}\)
4 \(\vec{a}_{1}\), and \(\vec{a}_{2} 1\)
Motion in Plane

143612 Two vectors are perpendicular, if

1 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=1\)
2 \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=0\)
3 \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0\)
4 \(\vec{A} \times \vec{B}=\vec{A} \vec{B}\)
Motion in Plane

143615 If force \(\mathbf{F}=\mathbf{5} \hat{\mathbf{i}}+\mathbf{3} \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) makes a displacement of \(s=6 \hat{i}-5 \hat{k}\) work done by the force is

1 10 units
2 \(122 \sqrt{5}\) units
3 \(5 \sqrt{122}\) units
4 20 units