00. Scalar and Vector Quantities
Motion in Plane

143602 Consider the vectors \(\mathbf{A}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \quad \mathbf{B}=\) \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})\). What is the value of \(C .(A \times B)\) ?

1 1
2 0
3 \(3 \sqrt{2}\)
4 \(18 \sqrt{5}\)
Motion in Plane

143603 In a triangle \(\mathrm{ABC}\), the sides \(\mathrm{AB}\) and \(\mathrm{AC}\) are represented by the vectors \(3 \hat{i}+\hat{j}+\hat{k}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) respectively. Calculate the angle \(\angle \mathrm{ABC}\).

1 \(\cos ^{-1} \sqrt{\frac{5}{11}}\)
2 \(\cos ^{-1} \sqrt{\frac{6}{11}}\)
3 \(\left(90^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
4 \(\left(180^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
Motion in Plane

143604 Three vectors \(\mathbf{A}=\mathbf{a} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}} ; \mathbf{B}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\mathbf{c k}\) are mutually perpendicular \((\hat{\mathbf{i}}, \hat{\mathbf{j}}\) and \(\hat{k}\) are unit vectors along \(X, Y\) and \(Z\) - axis respectively). The respective values of \(a, b\) and c are

1 \(0,0,0\)
2 \(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\)
3 \(1,-1,1\)
4 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
Motion in Plane

143605 \(\quad\) If \(\mathbf{A}=\mathbf{B}+\mathbf{C}\) have scalar magnitudes of \(5,4,3\) units respectively, then the angle between \(A\) and \(C\) is

1 \(\cos ^{-1}(3 / 5)\)
2 \(\cos ^{-1}(4 / 5)\)
3 \(\pi / 2\)
4 \(\sin ^{-1}(3 / 4)\)
Motion in Plane

143606 The magnitudes of vectors \(A, B\) and \(C\) are 3,4 and 5 units respectively. If \(A+B=C\), the angle between \(A\) and \(B\) is

1 \(\frac{\pi}{2}\)
2 \(\cos ^{-1}(0.6)\)
3 \(\tan -1\left(\frac{7}{5}\right)\)
4 \(\frac{\pi}{4}\)
Motion in Plane

143602 Consider the vectors \(\mathbf{A}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \quad \mathbf{B}=\) \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})\). What is the value of \(C .(A \times B)\) ?

1 1
2 0
3 \(3 \sqrt{2}\)
4 \(18 \sqrt{5}\)
Motion in Plane

143603 In a triangle \(\mathrm{ABC}\), the sides \(\mathrm{AB}\) and \(\mathrm{AC}\) are represented by the vectors \(3 \hat{i}+\hat{j}+\hat{k}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) respectively. Calculate the angle \(\angle \mathrm{ABC}\).

1 \(\cos ^{-1} \sqrt{\frac{5}{11}}\)
2 \(\cos ^{-1} \sqrt{\frac{6}{11}}\)
3 \(\left(90^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
4 \(\left(180^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
Motion in Plane

143604 Three vectors \(\mathbf{A}=\mathbf{a} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}} ; \mathbf{B}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\mathbf{c k}\) are mutually perpendicular \((\hat{\mathbf{i}}, \hat{\mathbf{j}}\) and \(\hat{k}\) are unit vectors along \(X, Y\) and \(Z\) - axis respectively). The respective values of \(a, b\) and c are

1 \(0,0,0\)
2 \(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\)
3 \(1,-1,1\)
4 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
Motion in Plane

143605 \(\quad\) If \(\mathbf{A}=\mathbf{B}+\mathbf{C}\) have scalar magnitudes of \(5,4,3\) units respectively, then the angle between \(A\) and \(C\) is

1 \(\cos ^{-1}(3 / 5)\)
2 \(\cos ^{-1}(4 / 5)\)
3 \(\pi / 2\)
4 \(\sin ^{-1}(3 / 4)\)
Motion in Plane

143606 The magnitudes of vectors \(A, B\) and \(C\) are 3,4 and 5 units respectively. If \(A+B=C\), the angle between \(A\) and \(B\) is

1 \(\frac{\pi}{2}\)
2 \(\cos ^{-1}(0.6)\)
3 \(\tan -1\left(\frac{7}{5}\right)\)
4 \(\frac{\pi}{4}\)
Motion in Plane

143602 Consider the vectors \(\mathbf{A}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \quad \mathbf{B}=\) \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})\). What is the value of \(C .(A \times B)\) ?

1 1
2 0
3 \(3 \sqrt{2}\)
4 \(18 \sqrt{5}\)
Motion in Plane

143603 In a triangle \(\mathrm{ABC}\), the sides \(\mathrm{AB}\) and \(\mathrm{AC}\) are represented by the vectors \(3 \hat{i}+\hat{j}+\hat{k}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) respectively. Calculate the angle \(\angle \mathrm{ABC}\).

1 \(\cos ^{-1} \sqrt{\frac{5}{11}}\)
2 \(\cos ^{-1} \sqrt{\frac{6}{11}}\)
3 \(\left(90^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
4 \(\left(180^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
Motion in Plane

143604 Three vectors \(\mathbf{A}=\mathbf{a} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}} ; \mathbf{B}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\mathbf{c k}\) are mutually perpendicular \((\hat{\mathbf{i}}, \hat{\mathbf{j}}\) and \(\hat{k}\) are unit vectors along \(X, Y\) and \(Z\) - axis respectively). The respective values of \(a, b\) and c are

1 \(0,0,0\)
2 \(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\)
3 \(1,-1,1\)
4 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
Motion in Plane

143605 \(\quad\) If \(\mathbf{A}=\mathbf{B}+\mathbf{C}\) have scalar magnitudes of \(5,4,3\) units respectively, then the angle between \(A\) and \(C\) is

1 \(\cos ^{-1}(3 / 5)\)
2 \(\cos ^{-1}(4 / 5)\)
3 \(\pi / 2\)
4 \(\sin ^{-1}(3 / 4)\)
Motion in Plane

143606 The magnitudes of vectors \(A, B\) and \(C\) are 3,4 and 5 units respectively. If \(A+B=C\), the angle between \(A\) and \(B\) is

1 \(\frac{\pi}{2}\)
2 \(\cos ^{-1}(0.6)\)
3 \(\tan -1\left(\frac{7}{5}\right)\)
4 \(\frac{\pi}{4}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in Plane

143602 Consider the vectors \(\mathbf{A}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \quad \mathbf{B}=\) \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})\). What is the value of \(C .(A \times B)\) ?

1 1
2 0
3 \(3 \sqrt{2}\)
4 \(18 \sqrt{5}\)
Motion in Plane

143603 In a triangle \(\mathrm{ABC}\), the sides \(\mathrm{AB}\) and \(\mathrm{AC}\) are represented by the vectors \(3 \hat{i}+\hat{j}+\hat{k}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) respectively. Calculate the angle \(\angle \mathrm{ABC}\).

1 \(\cos ^{-1} \sqrt{\frac{5}{11}}\)
2 \(\cos ^{-1} \sqrt{\frac{6}{11}}\)
3 \(\left(90^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
4 \(\left(180^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
Motion in Plane

143604 Three vectors \(\mathbf{A}=\mathbf{a} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}} ; \mathbf{B}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\mathbf{c k}\) are mutually perpendicular \((\hat{\mathbf{i}}, \hat{\mathbf{j}}\) and \(\hat{k}\) are unit vectors along \(X, Y\) and \(Z\) - axis respectively). The respective values of \(a, b\) and c are

1 \(0,0,0\)
2 \(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\)
3 \(1,-1,1\)
4 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
Motion in Plane

143605 \(\quad\) If \(\mathbf{A}=\mathbf{B}+\mathbf{C}\) have scalar magnitudes of \(5,4,3\) units respectively, then the angle between \(A\) and \(C\) is

1 \(\cos ^{-1}(3 / 5)\)
2 \(\cos ^{-1}(4 / 5)\)
3 \(\pi / 2\)
4 \(\sin ^{-1}(3 / 4)\)
Motion in Plane

143606 The magnitudes of vectors \(A, B\) and \(C\) are 3,4 and 5 units respectively. If \(A+B=C\), the angle between \(A\) and \(B\) is

1 \(\frac{\pi}{2}\)
2 \(\cos ^{-1}(0.6)\)
3 \(\tan -1\left(\frac{7}{5}\right)\)
4 \(\frac{\pi}{4}\)
Motion in Plane

143602 Consider the vectors \(\mathbf{A}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \quad \mathbf{B}=\) \(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\frac{1}{\sqrt{5}}(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})\). What is the value of \(C .(A \times B)\) ?

1 1
2 0
3 \(3 \sqrt{2}\)
4 \(18 \sqrt{5}\)
Motion in Plane

143603 In a triangle \(\mathrm{ABC}\), the sides \(\mathrm{AB}\) and \(\mathrm{AC}\) are represented by the vectors \(3 \hat{i}+\hat{j}+\hat{k}\) and \(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}\) respectively. Calculate the angle \(\angle \mathrm{ABC}\).

1 \(\cos ^{-1} \sqrt{\frac{5}{11}}\)
2 \(\cos ^{-1} \sqrt{\frac{6}{11}}\)
3 \(\left(90^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
4 \(\left(180^{\circ}-\cos ^{-1} \sqrt{\frac{5}{11}}\right)\)
Motion in Plane

143604 Three vectors \(\mathbf{A}=\mathbf{a} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}} ; \mathbf{B}=\hat{\mathbf{i}}+\mathbf{b} \hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{C}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\mathbf{c k}\) are mutually perpendicular \((\hat{\mathbf{i}}, \hat{\mathbf{j}}\) and \(\hat{k}\) are unit vectors along \(X, Y\) and \(Z\) - axis respectively). The respective values of \(a, b\) and c are

1 \(0,0,0\)
2 \(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\)
3 \(1,-1,1\)
4 \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\)
Motion in Plane

143605 \(\quad\) If \(\mathbf{A}=\mathbf{B}+\mathbf{C}\) have scalar magnitudes of \(5,4,3\) units respectively, then the angle between \(A\) and \(C\) is

1 \(\cos ^{-1}(3 / 5)\)
2 \(\cos ^{-1}(4 / 5)\)
3 \(\pi / 2\)
4 \(\sin ^{-1}(3 / 4)\)
Motion in Plane

143606 The magnitudes of vectors \(A, B\) and \(C\) are 3,4 and 5 units respectively. If \(A+B=C\), the angle between \(A\) and \(B\) is

1 \(\frac{\pi}{2}\)
2 \(\cos ^{-1}(0.6)\)
3 \(\tan -1\left(\frac{7}{5}\right)\)
4 \(\frac{\pi}{4}\)