00. Scalar and Vector Quantities
Motion in Plane

143567 If the two vectors \(\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad\) and \(\vec{B}=\hat{i}+2 \hat{j}-n \hat{k}\) are perpendicular then the value of \(n\) is :

1 1
2 2
3 3
4 4
5 5
Motion in Plane

143568 A particle is displaced from a position \((2 \hat{i}-\hat{j}+\hat{k})\) to another position \((3 \hat{i}+2 \hat{j}-2 \hat{k})\) under the action of the force of \((2 \hat{i}+\hat{j}-\hat{k})\). The work done by the force in an arbitrary unit is:

1 8
2 10
3 12
4 16
5 20
Motion in Plane

143570 The angle between two vectors \(A\) and \(B\) is \(\theta\). Vector \(R\) is the resultant of the two vectors. If \(R\) makes an \(\frac{\theta}{2}\) with \(A\), then

1 \(\mathrm{A}=2 \mathrm{~B}\)
2 \(\mathrm{A}=\frac{\mathrm{B}}{2}\)
3 \(\mathrm{A}=\mathrm{B}\)
4 \(\mathrm{AB}=1\)
Motion in Plane

143571 The power utilised when a force of \((2 \hat{i}+3 \hat{j}+4 \hat{k}) N\) acts on a body for \(4 s\), producing a displacement of \((3 \hat{i}+4 \hat{j}+5 \hat{k}) \mathrm{m}\), is

1 \(9.5 \mathrm{~W}\)
2 \(7.5 \mathrm{~W}\)
3 \(6.5 \mathrm{~W}\)
4 \(4.5 \mathrm{~W}\)
Motion in Plane

143572 \(\quad \vec{A}=4 \hat{i}+3 \hat{j}\) and \(\vec{B}=4 \hat{i}+2 \hat{j}\). Find a vector parallel to \(\vec{A}\) but has magnitude five times that of \(\overrightarrow{\mathbf{B}}\).

1 \(\sqrt{20}(2 \hat{i}+3 \hat{j})\)
2 \(\sqrt{20}(4 \hat{i}+3 \hat{j})\)
3 \(\sqrt{20}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\sqrt{10}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143567 If the two vectors \(\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad\) and \(\vec{B}=\hat{i}+2 \hat{j}-n \hat{k}\) are perpendicular then the value of \(n\) is :

1 1
2 2
3 3
4 4
5 5
Motion in Plane

143568 A particle is displaced from a position \((2 \hat{i}-\hat{j}+\hat{k})\) to another position \((3 \hat{i}+2 \hat{j}-2 \hat{k})\) under the action of the force of \((2 \hat{i}+\hat{j}-\hat{k})\). The work done by the force in an arbitrary unit is:

1 8
2 10
3 12
4 16
5 20
Motion in Plane

143570 The angle between two vectors \(A\) and \(B\) is \(\theta\). Vector \(R\) is the resultant of the two vectors. If \(R\) makes an \(\frac{\theta}{2}\) with \(A\), then

1 \(\mathrm{A}=2 \mathrm{~B}\)
2 \(\mathrm{A}=\frac{\mathrm{B}}{2}\)
3 \(\mathrm{A}=\mathrm{B}\)
4 \(\mathrm{AB}=1\)
Motion in Plane

143571 The power utilised when a force of \((2 \hat{i}+3 \hat{j}+4 \hat{k}) N\) acts on a body for \(4 s\), producing a displacement of \((3 \hat{i}+4 \hat{j}+5 \hat{k}) \mathrm{m}\), is

1 \(9.5 \mathrm{~W}\)
2 \(7.5 \mathrm{~W}\)
3 \(6.5 \mathrm{~W}\)
4 \(4.5 \mathrm{~W}\)
Motion in Plane

143572 \(\quad \vec{A}=4 \hat{i}+3 \hat{j}\) and \(\vec{B}=4 \hat{i}+2 \hat{j}\). Find a vector parallel to \(\vec{A}\) but has magnitude five times that of \(\overrightarrow{\mathbf{B}}\).

1 \(\sqrt{20}(2 \hat{i}+3 \hat{j})\)
2 \(\sqrt{20}(4 \hat{i}+3 \hat{j})\)
3 \(\sqrt{20}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\sqrt{10}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143567 If the two vectors \(\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad\) and \(\vec{B}=\hat{i}+2 \hat{j}-n \hat{k}\) are perpendicular then the value of \(n\) is :

1 1
2 2
3 3
4 4
5 5
Motion in Plane

143568 A particle is displaced from a position \((2 \hat{i}-\hat{j}+\hat{k})\) to another position \((3 \hat{i}+2 \hat{j}-2 \hat{k})\) under the action of the force of \((2 \hat{i}+\hat{j}-\hat{k})\). The work done by the force in an arbitrary unit is:

1 8
2 10
3 12
4 16
5 20
Motion in Plane

143570 The angle between two vectors \(A\) and \(B\) is \(\theta\). Vector \(R\) is the resultant of the two vectors. If \(R\) makes an \(\frac{\theta}{2}\) with \(A\), then

1 \(\mathrm{A}=2 \mathrm{~B}\)
2 \(\mathrm{A}=\frac{\mathrm{B}}{2}\)
3 \(\mathrm{A}=\mathrm{B}\)
4 \(\mathrm{AB}=1\)
Motion in Plane

143571 The power utilised when a force of \((2 \hat{i}+3 \hat{j}+4 \hat{k}) N\) acts on a body for \(4 s\), producing a displacement of \((3 \hat{i}+4 \hat{j}+5 \hat{k}) \mathrm{m}\), is

1 \(9.5 \mathrm{~W}\)
2 \(7.5 \mathrm{~W}\)
3 \(6.5 \mathrm{~W}\)
4 \(4.5 \mathrm{~W}\)
Motion in Plane

143572 \(\quad \vec{A}=4 \hat{i}+3 \hat{j}\) and \(\vec{B}=4 \hat{i}+2 \hat{j}\). Find a vector parallel to \(\vec{A}\) but has magnitude five times that of \(\overrightarrow{\mathbf{B}}\).

1 \(\sqrt{20}(2 \hat{i}+3 \hat{j})\)
2 \(\sqrt{20}(4 \hat{i}+3 \hat{j})\)
3 \(\sqrt{20}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\sqrt{10}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in Plane

143567 If the two vectors \(\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad\) and \(\vec{B}=\hat{i}+2 \hat{j}-n \hat{k}\) are perpendicular then the value of \(n\) is :

1 1
2 2
3 3
4 4
5 5
Motion in Plane

143568 A particle is displaced from a position \((2 \hat{i}-\hat{j}+\hat{k})\) to another position \((3 \hat{i}+2 \hat{j}-2 \hat{k})\) under the action of the force of \((2 \hat{i}+\hat{j}-\hat{k})\). The work done by the force in an arbitrary unit is:

1 8
2 10
3 12
4 16
5 20
Motion in Plane

143570 The angle between two vectors \(A\) and \(B\) is \(\theta\). Vector \(R\) is the resultant of the two vectors. If \(R\) makes an \(\frac{\theta}{2}\) with \(A\), then

1 \(\mathrm{A}=2 \mathrm{~B}\)
2 \(\mathrm{A}=\frac{\mathrm{B}}{2}\)
3 \(\mathrm{A}=\mathrm{B}\)
4 \(\mathrm{AB}=1\)
Motion in Plane

143571 The power utilised when a force of \((2 \hat{i}+3 \hat{j}+4 \hat{k}) N\) acts on a body for \(4 s\), producing a displacement of \((3 \hat{i}+4 \hat{j}+5 \hat{k}) \mathrm{m}\), is

1 \(9.5 \mathrm{~W}\)
2 \(7.5 \mathrm{~W}\)
3 \(6.5 \mathrm{~W}\)
4 \(4.5 \mathrm{~W}\)
Motion in Plane

143572 \(\quad \vec{A}=4 \hat{i}+3 \hat{j}\) and \(\vec{B}=4 \hat{i}+2 \hat{j}\). Find a vector parallel to \(\vec{A}\) but has magnitude five times that of \(\overrightarrow{\mathbf{B}}\).

1 \(\sqrt{20}(2 \hat{i}+3 \hat{j})\)
2 \(\sqrt{20}(4 \hat{i}+3 \hat{j})\)
3 \(\sqrt{20}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\sqrt{10}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
Motion in Plane

143567 If the two vectors \(\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad\) and \(\vec{B}=\hat{i}+2 \hat{j}-n \hat{k}\) are perpendicular then the value of \(n\) is :

1 1
2 2
3 3
4 4
5 5
Motion in Plane

143568 A particle is displaced from a position \((2 \hat{i}-\hat{j}+\hat{k})\) to another position \((3 \hat{i}+2 \hat{j}-2 \hat{k})\) under the action of the force of \((2 \hat{i}+\hat{j}-\hat{k})\). The work done by the force in an arbitrary unit is:

1 8
2 10
3 12
4 16
5 20
Motion in Plane

143570 The angle between two vectors \(A\) and \(B\) is \(\theta\). Vector \(R\) is the resultant of the two vectors. If \(R\) makes an \(\frac{\theta}{2}\) with \(A\), then

1 \(\mathrm{A}=2 \mathrm{~B}\)
2 \(\mathrm{A}=\frac{\mathrm{B}}{2}\)
3 \(\mathrm{A}=\mathrm{B}\)
4 \(\mathrm{AB}=1\)
Motion in Plane

143571 The power utilised when a force of \((2 \hat{i}+3 \hat{j}+4 \hat{k}) N\) acts on a body for \(4 s\), producing a displacement of \((3 \hat{i}+4 \hat{j}+5 \hat{k}) \mathrm{m}\), is

1 \(9.5 \mathrm{~W}\)
2 \(7.5 \mathrm{~W}\)
3 \(6.5 \mathrm{~W}\)
4 \(4.5 \mathrm{~W}\)
Motion in Plane

143572 \(\quad \vec{A}=4 \hat{i}+3 \hat{j}\) and \(\vec{B}=4 \hat{i}+2 \hat{j}\). Find a vector parallel to \(\vec{A}\) but has magnitude five times that of \(\overrightarrow{\mathbf{B}}\).

1 \(\sqrt{20}(2 \hat{i}+3 \hat{j})\)
2 \(\sqrt{20}(4 \hat{i}+3 \hat{j})\)
3 \(\sqrt{20}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)
4 \(\sqrt{10}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}})\)