143573
Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is
1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Explanation:
C Given, \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) \(\mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) Where, \(\theta=\) Angle between \(A \& B\), \(\because \mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}\) \(\therefore \mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) \(\therefore \cos \theta=0\) \(\theta=\frac{\pi}{2}\)
BITSAT-2009
Motion in Plane
143574
The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is
143575
Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is
143576
The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Motion in Plane
143573
Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is
1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Explanation:
C Given, \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) \(\mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) Where, \(\theta=\) Angle between \(A \& B\), \(\because \mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}\) \(\therefore \mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) \(\therefore \cos \theta=0\) \(\theta=\frac{\pi}{2}\)
BITSAT-2009
Motion in Plane
143574
The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is
143575
Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is
143576
The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?
143573
Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is
1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Explanation:
C Given, \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) \(\mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) Where, \(\theta=\) Angle between \(A \& B\), \(\because \mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}\) \(\therefore \mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) \(\therefore \cos \theta=0\) \(\theta=\frac{\pi}{2}\)
BITSAT-2009
Motion in Plane
143574
The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is
143575
Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is
143576
The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?
143573
Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is
1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Explanation:
C Given, \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) \(\mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) Where, \(\theta=\) Angle between \(A \& B\), \(\because \mathrm{R}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}\) \(\therefore \mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta\) \(\therefore \cos \theta=0\) \(\theta=\frac{\pi}{2}\)
BITSAT-2009
Motion in Plane
143574
The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is
143575
Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is
143576
The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?