00. Scalar and Vector Quantities
Motion in Plane

143573 Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Motion in Plane

143574 The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is

1 1,2
2 \(1,2,3,4\)
3 \(2,3,4\)
4 \(1,2,4\)
Motion in Plane

143575 Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is

1 \(\sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{3}\)
4 \(4 \sqrt{3}\)
Motion in Plane

143576 The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?

1 \(\nabla(\hat{\mathrm{A}} \hat{\mathrm{R}})=0\)
2 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{A}}\)
3 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{R}}\)
4 None of these
Motion in Plane

143573 Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Motion in Plane

143574 The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is

1 1,2
2 \(1,2,3,4\)
3 \(2,3,4\)
4 \(1,2,4\)
Motion in Plane

143575 Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is

1 \(\sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{3}\)
4 \(4 \sqrt{3}\)
Motion in Plane

143576 The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?

1 \(\nabla(\hat{\mathrm{A}} \hat{\mathrm{R}})=0\)
2 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{A}}\)
3 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{R}}\)
4 None of these
Motion in Plane

143573 Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Motion in Plane

143574 The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is

1 1,2
2 \(1,2,3,4\)
3 \(2,3,4\)
4 \(1,2,4\)
Motion in Plane

143575 Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is

1 \(\sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{3}\)
4 \(4 \sqrt{3}\)
Motion in Plane

143576 The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?

1 \(\nabla(\hat{\mathrm{A}} \hat{\mathrm{R}})=0\)
2 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{A}}\)
3 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{R}}\)
4 None of these
Motion in Plane

143573 Given that \(\vec{A}+\vec{B}=\vec{R}\) and \(A^{2}+B^{2}=R^{2}\) The angle between \(\vec{A}\) and \(\vec{B}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Motion in Plane

143574 The two vectors \(\vec{A}\) and \(\vec{B}\) are drawn from a common point and \(\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}\), then angle between \(\vec{A}\) and \(\vec{B}\) is

1 1,2
2 \(1,2,3,4\)
3 \(2,3,4\)
4 \(1,2,4\)
Motion in Plane

143575 Given \(\overrightarrow{\mathbf{P}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{Q}}=\hat{\mathbf{j}}-\mathbf{2} \hat{\mathbf{k}}\). The magnitude of their resultant is

1 \(\sqrt{3}\)
2 \(2 \sqrt{3}\)
3 \(3 \sqrt{3}\)
4 \(4 \sqrt{3}\)
Motion in Plane

143576 The position vector of a point is \(\overrightarrow{\mathbf{R}}=\mathbf{x} \hat{\mathbf{i}}+\mathbf{y} \hat{\mathbf{j}}+\mathbf{z} \hat{\mathbf{k}}\) and another vector is \(\vec{A}=3 \hat{i}+2 \hat{j}+5 \hat{k}\). Which of the mathematical relation is correct?

1 \(\nabla(\hat{\mathrm{A}} \hat{\mathrm{R}})=0\)
2 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{A}}\)
3 \(\nabla(\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{R}})=\overrightarrow{\mathrm{R}}\)
4 None of these