00. Scalar and Vector Quantities
Motion in Plane

143562 In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals

1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Motion in Plane

143564 The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are

1 11,5
2 9,7
3 6,10
4 4,12
5 2,14
Motion in Plane

143565 A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is

1 \(4 \mathrm{~W}\)
2 \(5 \mathrm{~W}\)
3 \(2 \mathrm{~W}\)
4 \(8 \mathrm{~W}\)
5 \(1 \mathrm{~W}\)
Motion in Plane

143566 A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is

1 20
2 40
3 50
4 30
5 35
Motion in Plane

143562 In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals

1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Motion in Plane

143564 The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are

1 11,5
2 9,7
3 6,10
4 4,12
5 2,14
Motion in Plane

143565 A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is

1 \(4 \mathrm{~W}\)
2 \(5 \mathrm{~W}\)
3 \(2 \mathrm{~W}\)
4 \(8 \mathrm{~W}\)
5 \(1 \mathrm{~W}\)
Motion in Plane

143566 A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is

1 20
2 40
3 50
4 30
5 35
Motion in Plane

143562 In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals

1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Motion in Plane

143564 The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are

1 11,5
2 9,7
3 6,10
4 4,12
5 2,14
Motion in Plane

143565 A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is

1 \(4 \mathrm{~W}\)
2 \(5 \mathrm{~W}\)
3 \(2 \mathrm{~W}\)
4 \(8 \mathrm{~W}\)
5 \(1 \mathrm{~W}\)
Motion in Plane

143566 A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is

1 20
2 40
3 50
4 30
5 35
Motion in Plane

143562 In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals

1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Motion in Plane

143564 The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are

1 11,5
2 9,7
3 6,10
4 4,12
5 2,14
Motion in Plane

143565 A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is

1 \(4 \mathrm{~W}\)
2 \(5 \mathrm{~W}\)
3 \(2 \mathrm{~W}\)
4 \(8 \mathrm{~W}\)
5 \(1 \mathrm{~W}\)
Motion in Plane

143566 A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is

1 20
2 40
3 50
4 30
5 35