143562
In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals
1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Explanation:
C Given, \(\mathrm{PQ}=\mathrm{A}, \mathrm{QR}=\mathrm{B}, \mathrm{RS}=\mathrm{C}, \mathrm{PS}=\) ? According to polygon law of vector addition, \(\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}-\mathrm{PS}=0\) \(\mathrm{PS}=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}\) \(\mathrm{PS}=\mathrm{A}+\mathrm{B}+\mathrm{C}\)
Kerala CEE - 2016
Motion in Plane
143564
The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are
143565
A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is
143566
A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Motion in Plane
143562
In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals
1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Explanation:
C Given, \(\mathrm{PQ}=\mathrm{A}, \mathrm{QR}=\mathrm{B}, \mathrm{RS}=\mathrm{C}, \mathrm{PS}=\) ? According to polygon law of vector addition, \(\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}-\mathrm{PS}=0\) \(\mathrm{PS}=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}\) \(\mathrm{PS}=\mathrm{A}+\mathrm{B}+\mathrm{C}\)
Kerala CEE - 2016
Motion in Plane
143564
The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are
143565
A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is
143566
A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is
143562
In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals
1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Explanation:
C Given, \(\mathrm{PQ}=\mathrm{A}, \mathrm{QR}=\mathrm{B}, \mathrm{RS}=\mathrm{C}, \mathrm{PS}=\) ? According to polygon law of vector addition, \(\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}-\mathrm{PS}=0\) \(\mathrm{PS}=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}\) \(\mathrm{PS}=\mathrm{A}+\mathrm{B}+\mathrm{C}\)
Kerala CEE - 2016
Motion in Plane
143564
The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are
143565
A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is
143566
A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is
143562
In the given diagram, if \(P Q=A, Q R=B\) and \(\mathbf{R S}=\mathbf{C}\), then PS equals
1 \(\mathrm{A}-\mathrm{B}+\mathrm{C}\)
2 \(\mathrm{A}+\mathrm{B}-\mathrm{C}\)
3 \(\mathrm{A}+\mathrm{B}+\mathrm{C}\)
4 \(\mathrm{A}-\mathrm{B}-\mathrm{C}\)
5 \(-\mathrm{A}-\mathrm{B}-\mathrm{C}\)
Explanation:
C Given, \(\mathrm{PQ}=\mathrm{A}, \mathrm{QR}=\mathrm{B}, \mathrm{RS}=\mathrm{C}, \mathrm{PS}=\) ? According to polygon law of vector addition, \(\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}-\mathrm{PS}=0\) \(\mathrm{PS}=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}\) \(\mathrm{PS}=\mathrm{A}+\mathrm{B}+\mathrm{C}\)
Kerala CEE - 2016
Motion in Plane
143564
The sum of magnitudes of two forces acting at a point is \(16 \mathrm{~N}\) and their resultant \(8 \sqrt{3} \mathrm{~N}\) is at \(90^{\circ}\) with the force of smaller magnitude. The two forces (in \(\mathrm{N}\) ) are
143565
A force \((4 \hat{i}+\hat{j}-2 \hat{k}) N\) acting on a body maintains its velocity at \((2 \hat{i}+2 \hat{j}+3 \hat{k}) m^{-1}\). The power exerted is
143566
A particle acted upon by constant forces \(4 \hat{i}+\hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}-\hat{k}\) is displaced from the point \(\hat{i}+2 \hat{j}+3 \hat{k}\) to the point \(5 \hat{i}+4 \hat{j}+\hat{k}\). The total work done by the forces in SI unit is