01. Units
Units and Measurements

139434 If time (t), velocity (v) and angular momentum (I) are taken as the fundamental units, then the dimension of mass \((m)\) in terms of \(t, v\) and \(l\) is

1 \(\left[\mathrm{t}^{-1} \mathrm{v}^{1} \mathrm{I}^{-2}\right]\)
2 \(\left[\mathrm{t}^{1} \mathrm{v}^{2} \mathrm{I}^{-1}\right]\)
3 \(\left[\mathrm{t}^{-2} \mathrm{v}^{-1} \mathrm{I}^{1}\right]\)
4 \(\left[\mathrm{t}^{-1} \mathrm{v}^{-2} \mathrm{I}^{1}\right]\)
Units and Measurements

139435 Match List-I with List-II
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| A. | $\mathrm{R}_{\mathrm{H}}$ (Rydberg constant) | 1. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ |
| B. | $\mathrm{h}$ (Planck's constant) | 2. | $\mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}$ |
| C. | $\mu_{\mathrm{B}} \quad$ (Magnetic \lt br> energy density) | field | 3. | $\mathrm{~m}^{-1}$ |
| D. | $\eta \quad$ (Coefficient \lt br> viscosity) | 4. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ | |
Choose the most appropriate answer from the options given below.

1 2 (A) 3 (B) 4 (C) 1 (D)
2 3 (A) 2 (B) 4 (C) 1 (D)
3 4 (A) 2 (B) 1 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Units and Measurements

139438 The SI unit of length is 'meter' suppose we adopt a new unit of length which equals \(x\) meter. Then, the area of \(1 \mathrm{~m}^{2}\) expressed in terms of new unit has a magnitude

1 \(\mathrm{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(\frac{1}{\mathrm{x}^{2}}\)
Units and Measurements

139439 The S.I unit of inductance is

1 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-2}\)
2 Kg. \(\mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
3 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
4 Kg. \(\mathrm{m}^{2} \cdot \mathrm{S}^{-3} \cdot \mathrm{A}^{-2}\)
Units and Measurements

139434 If time (t), velocity (v) and angular momentum (I) are taken as the fundamental units, then the dimension of mass \((m)\) in terms of \(t, v\) and \(l\) is

1 \(\left[\mathrm{t}^{-1} \mathrm{v}^{1} \mathrm{I}^{-2}\right]\)
2 \(\left[\mathrm{t}^{1} \mathrm{v}^{2} \mathrm{I}^{-1}\right]\)
3 \(\left[\mathrm{t}^{-2} \mathrm{v}^{-1} \mathrm{I}^{1}\right]\)
4 \(\left[\mathrm{t}^{-1} \mathrm{v}^{-2} \mathrm{I}^{1}\right]\)
Units and Measurements

139435 Match List-I with List-II
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| A. | $\mathrm{R}_{\mathrm{H}}$ (Rydberg constant) | 1. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ |
| B. | $\mathrm{h}$ (Planck's constant) | 2. | $\mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}$ |
| C. | $\mu_{\mathrm{B}} \quad$ (Magnetic \lt br> energy density) | field | 3. | $\mathrm{~m}^{-1}$ |
| D. | $\eta \quad$ (Coefficient \lt br> viscosity) | 4. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ | |
Choose the most appropriate answer from the options given below.

1 2 (A) 3 (B) 4 (C) 1 (D)
2 3 (A) 2 (B) 4 (C) 1 (D)
3 4 (A) 2 (B) 1 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Units and Measurements

139438 The SI unit of length is 'meter' suppose we adopt a new unit of length which equals \(x\) meter. Then, the area of \(1 \mathrm{~m}^{2}\) expressed in terms of new unit has a magnitude

1 \(\mathrm{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(\frac{1}{\mathrm{x}^{2}}\)
Units and Measurements

139439 The S.I unit of inductance is

1 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-2}\)
2 Kg. \(\mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
3 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
4 Kg. \(\mathrm{m}^{2} \cdot \mathrm{S}^{-3} \cdot \mathrm{A}^{-2}\)
Units and Measurements

139434 If time (t), velocity (v) and angular momentum (I) are taken as the fundamental units, then the dimension of mass \((m)\) in terms of \(t, v\) and \(l\) is

1 \(\left[\mathrm{t}^{-1} \mathrm{v}^{1} \mathrm{I}^{-2}\right]\)
2 \(\left[\mathrm{t}^{1} \mathrm{v}^{2} \mathrm{I}^{-1}\right]\)
3 \(\left[\mathrm{t}^{-2} \mathrm{v}^{-1} \mathrm{I}^{1}\right]\)
4 \(\left[\mathrm{t}^{-1} \mathrm{v}^{-2} \mathrm{I}^{1}\right]\)
Units and Measurements

139435 Match List-I with List-II
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| A. | $\mathrm{R}_{\mathrm{H}}$ (Rydberg constant) | 1. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ |
| B. | $\mathrm{h}$ (Planck's constant) | 2. | $\mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}$ |
| C. | $\mu_{\mathrm{B}} \quad$ (Magnetic \lt br> energy density) | field | 3. | $\mathrm{~m}^{-1}$ |
| D. | $\eta \quad$ (Coefficient \lt br> viscosity) | 4. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ | |
Choose the most appropriate answer from the options given below.

1 2 (A) 3 (B) 4 (C) 1 (D)
2 3 (A) 2 (B) 4 (C) 1 (D)
3 4 (A) 2 (B) 1 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Units and Measurements

139438 The SI unit of length is 'meter' suppose we adopt a new unit of length which equals \(x\) meter. Then, the area of \(1 \mathrm{~m}^{2}\) expressed in terms of new unit has a magnitude

1 \(\mathrm{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(\frac{1}{\mathrm{x}^{2}}\)
Units and Measurements

139439 The S.I unit of inductance is

1 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-2}\)
2 Kg. \(\mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
3 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
4 Kg. \(\mathrm{m}^{2} \cdot \mathrm{S}^{-3} \cdot \mathrm{A}^{-2}\)
Units and Measurements

139434 If time (t), velocity (v) and angular momentum (I) are taken as the fundamental units, then the dimension of mass \((m)\) in terms of \(t, v\) and \(l\) is

1 \(\left[\mathrm{t}^{-1} \mathrm{v}^{1} \mathrm{I}^{-2}\right]\)
2 \(\left[\mathrm{t}^{1} \mathrm{v}^{2} \mathrm{I}^{-1}\right]\)
3 \(\left[\mathrm{t}^{-2} \mathrm{v}^{-1} \mathrm{I}^{1}\right]\)
4 \(\left[\mathrm{t}^{-1} \mathrm{v}^{-2} \mathrm{I}^{1}\right]\)
Units and Measurements

139435 Match List-I with List-II
| | List-I | | List-II |
| :--- | :--- | :--- | :--- |
| A. | $\mathrm{R}_{\mathrm{H}}$ (Rydberg constant) | 1. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ |
| B. | $\mathrm{h}$ (Planck's constant) | 2. | $\mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1}$ |
| C. | $\mu_{\mathrm{B}} \quad$ (Magnetic \lt br> energy density) | field | 3. | $\mathrm{~m}^{-1}$ |
| D. | $\eta \quad$ (Coefficient \lt br> viscosity) | 4. | $\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ | |
Choose the most appropriate answer from the options given below.

1 2 (A) 3 (B) 4 (C) 1 (D)
2 3 (A) 2 (B) 4 (C) 1 (D)
3 4 (A) 2 (B) 1 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Units and Measurements

139438 The SI unit of length is 'meter' suppose we adopt a new unit of length which equals \(x\) meter. Then, the area of \(1 \mathrm{~m}^{2}\) expressed in terms of new unit has a magnitude

1 \(\mathrm{x}\)
2 \(x^{2}\)
3 \(\frac{1}{\mathrm{x}}\)
4 \(\frac{1}{\mathrm{x}^{2}}\)
Units and Measurements

139439 The S.I unit of inductance is

1 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-2}\)
2 Kg. \(\mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
3 \(\mathrm{Kg} \cdot \mathrm{m}^{2} \cdot \mathrm{S}^{-2} \cdot \mathrm{A}^{-1}\)
4 Kg. \(\mathrm{m}^{2} \cdot \mathrm{S}^{-3} \cdot \mathrm{A}^{-2}\)