04. Conductance and Conductor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

276219 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ ?. Given that $\Lambda_{\mathrm{Al}^{3+}}^{\circ}$ and $\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$ are the equivalent conductances at infinite dilution of the respective ions.

1 $2 \Lambda_{\mathrm{Al}^{3+}}^{\circ}+3 \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
2 $\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
3 $\left(\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\right) \times 6$
4 $\frac{1}{3} \Lambda_{\mathrm{Al}^{3+}}^{\circ}+\frac{1}{2} \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
ELECTROCHEMISTRY

276222 A conductivity cell has been calibrated with a 0.01M 1 : 1 electrolyte solution (specific conductance, $\mathrm{k}=1.25 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ ) in the cell and the measured resistance was $800 \Omega$ at $25^{\circ} \mathrm{C}$. The cell constant will be

1 $1.02 \mathrm{~cm}^{-1}$
2 $0.102 \mathrm{~cm}^{-1}$
3 $1.00 \mathrm{~cm}^{-1}$
4 $0.5 \mathrm{~cm}^{-1}$
ELECTROCHEMISTRY

276224 At $25^{\circ} \mathrm{C}$, the molar conductance of $0.007 \mathrm{M}$ hydrofluoric acid is $150 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ and it's $\mathrm{A}^{0} \mathrm{~m}=500 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ The value of the dissociation constant of the acid at the given concentration at $25^{\circ} \mathrm{C}$ is

1 $7 \times 10^{-4} \mathrm{M}$
2 $7 \times 10^{-5} \mathrm{M}$
3 $9 \times 10^{-3} \mathrm{M}$
4 $9 \times 10^{-4} \mathrm{M}$
ELECTROCHEMISTRY

276226 Molar conductances of $\mathrm{BaCl}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HCl}$ at infinite dilutions are $x_{1}, x_{2}$ and $x_{3}$ respectively. Equivalent conductance of $\mathrm{BaSO}_{4}$ at infinite dilution will be:

1 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
2 $x_{1}+x_{2}-2 x_{3}$
3 $\left(\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
4 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}\right) / 2$
ELECTROCHEMISTRY

276219 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ ?. Given that $\Lambda_{\mathrm{Al}^{3+}}^{\circ}$ and $\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$ are the equivalent conductances at infinite dilution of the respective ions.

1 $2 \Lambda_{\mathrm{Al}^{3+}}^{\circ}+3 \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
2 $\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
3 $\left(\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\right) \times 6$
4 $\frac{1}{3} \Lambda_{\mathrm{Al}^{3+}}^{\circ}+\frac{1}{2} \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
ELECTROCHEMISTRY

276222 A conductivity cell has been calibrated with a 0.01M 1 : 1 electrolyte solution (specific conductance, $\mathrm{k}=1.25 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ ) in the cell and the measured resistance was $800 \Omega$ at $25^{\circ} \mathrm{C}$. The cell constant will be

1 $1.02 \mathrm{~cm}^{-1}$
2 $0.102 \mathrm{~cm}^{-1}$
3 $1.00 \mathrm{~cm}^{-1}$
4 $0.5 \mathrm{~cm}^{-1}$
ELECTROCHEMISTRY

276224 At $25^{\circ} \mathrm{C}$, the molar conductance of $0.007 \mathrm{M}$ hydrofluoric acid is $150 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ and it's $\mathrm{A}^{0} \mathrm{~m}=500 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ The value of the dissociation constant of the acid at the given concentration at $25^{\circ} \mathrm{C}$ is

1 $7 \times 10^{-4} \mathrm{M}$
2 $7 \times 10^{-5} \mathrm{M}$
3 $9 \times 10^{-3} \mathrm{M}$
4 $9 \times 10^{-4} \mathrm{M}$
ELECTROCHEMISTRY

276226 Molar conductances of $\mathrm{BaCl}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HCl}$ at infinite dilutions are $x_{1}, x_{2}$ and $x_{3}$ respectively. Equivalent conductance of $\mathrm{BaSO}_{4}$ at infinite dilution will be:

1 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
2 $x_{1}+x_{2}-2 x_{3}$
3 $\left(\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
4 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}\right) / 2$
ELECTROCHEMISTRY

276219 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ ?. Given that $\Lambda_{\mathrm{Al}^{3+}}^{\circ}$ and $\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$ are the equivalent conductances at infinite dilution of the respective ions.

1 $2 \Lambda_{\mathrm{Al}^{3+}}^{\circ}+3 \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
2 $\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
3 $\left(\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\right) \times 6$
4 $\frac{1}{3} \Lambda_{\mathrm{Al}^{3+}}^{\circ}+\frac{1}{2} \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
ELECTROCHEMISTRY

276222 A conductivity cell has been calibrated with a 0.01M 1 : 1 electrolyte solution (specific conductance, $\mathrm{k}=1.25 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ ) in the cell and the measured resistance was $800 \Omega$ at $25^{\circ} \mathrm{C}$. The cell constant will be

1 $1.02 \mathrm{~cm}^{-1}$
2 $0.102 \mathrm{~cm}^{-1}$
3 $1.00 \mathrm{~cm}^{-1}$
4 $0.5 \mathrm{~cm}^{-1}$
ELECTROCHEMISTRY

276224 At $25^{\circ} \mathrm{C}$, the molar conductance of $0.007 \mathrm{M}$ hydrofluoric acid is $150 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ and it's $\mathrm{A}^{0} \mathrm{~m}=500 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ The value of the dissociation constant of the acid at the given concentration at $25^{\circ} \mathrm{C}$ is

1 $7 \times 10^{-4} \mathrm{M}$
2 $7 \times 10^{-5} \mathrm{M}$
3 $9 \times 10^{-3} \mathrm{M}$
4 $9 \times 10^{-4} \mathrm{M}$
ELECTROCHEMISTRY

276226 Molar conductances of $\mathrm{BaCl}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HCl}$ at infinite dilutions are $x_{1}, x_{2}$ and $x_{3}$ respectively. Equivalent conductance of $\mathrm{BaSO}_{4}$ at infinite dilution will be:

1 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
2 $x_{1}+x_{2}-2 x_{3}$
3 $\left(\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
4 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}\right) / 2$
ELECTROCHEMISTRY

276219 Which of the following expressions correctly represents the equivalent conductance at infinite dilution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ ?. Given that $\Lambda_{\mathrm{Al}^{3+}}^{\circ}$ and $\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$ are the equivalent conductances at infinite dilution of the respective ions.

1 $2 \Lambda_{\mathrm{Al}^{3+}}^{\circ}+3 \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
2 $\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
3 $\left(\Lambda_{\mathrm{Al}^{3+}}^{\circ}+\Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}\right) \times 6$
4 $\frac{1}{3} \Lambda_{\mathrm{Al}^{3+}}^{\circ}+\frac{1}{2} \Lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
ELECTROCHEMISTRY

276222 A conductivity cell has been calibrated with a 0.01M 1 : 1 electrolyte solution (specific conductance, $\mathrm{k}=1.25 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ ) in the cell and the measured resistance was $800 \Omega$ at $25^{\circ} \mathrm{C}$. The cell constant will be

1 $1.02 \mathrm{~cm}^{-1}$
2 $0.102 \mathrm{~cm}^{-1}$
3 $1.00 \mathrm{~cm}^{-1}$
4 $0.5 \mathrm{~cm}^{-1}$
ELECTROCHEMISTRY

276224 At $25^{\circ} \mathrm{C}$, the molar conductance of $0.007 \mathrm{M}$ hydrofluoric acid is $150 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ and it's $\mathrm{A}^{0} \mathrm{~m}=500 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$ The value of the dissociation constant of the acid at the given concentration at $25^{\circ} \mathrm{C}$ is

1 $7 \times 10^{-4} \mathrm{M}$
2 $7 \times 10^{-5} \mathrm{M}$
3 $9 \times 10^{-3} \mathrm{M}$
4 $9 \times 10^{-4} \mathrm{M}$
ELECTROCHEMISTRY

276226 Molar conductances of $\mathrm{BaCl}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HCl}$ at infinite dilutions are $x_{1}, x_{2}$ and $x_{3}$ respectively. Equivalent conductance of $\mathrm{BaSO}_{4}$ at infinite dilution will be:

1 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
2 $x_{1}+x_{2}-2 x_{3}$
3 $\left(\mathrm{x}_{1}-\mathrm{x}_{2}-\mathrm{x}_{3}\right) / 2$
4 $\left(\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}\right) / 2$