04. Conductance and Conductor
ELECTROCHEMISTRY

276189 At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240,349 and $229 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively. The equivalent conductance of benzoic acid in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ at the same conditions is

1 80
2 328
3 360
4 408
ELECTROCHEMISTRY

276190 A solution of concentration $C$ g equiv/L has a specific resistance $R$. The equivalent conductance of the solution is

1 $\frac{\mathrm{R}}{\mathrm{C}}$
2 $\frac{\mathrm{C}}{\mathrm{R}}$
3 $\frac{1000}{\mathrm{RC}}$
4 $\frac{1000 \mathrm{R}}{\mathrm{C}}$
ELECTROCHEMISTRY

276192 A 0.5 M NaOH solution offers a resistance of $31.6 \mathrm{ohm}$ in a conductivity cell at room temperature. What shall be the approximate molar conductance of this $\mathrm{NaOH}$ solution if cell constant of the cell is $0.367 \mathrm{~cm}^{-1}$ ?

1 $234 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $23.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $4645 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $5464 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276193 The conductivity of a saturated solution of BaSO $_{4}$ is $3.06 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and its equivalent conductance is $1.53 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$. The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{BaSO}_{4}$ will be

1 $4 \times 10^{-12}$
2 $2.5 \times 10^{-9}$
3 $2.5 \times 10^{-13}$
4 $4 \times 10^{-6}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

276189 At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240,349 and $229 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively. The equivalent conductance of benzoic acid in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ at the same conditions is

1 80
2 328
3 360
4 408
ELECTROCHEMISTRY

276190 A solution of concentration $C$ g equiv/L has a specific resistance $R$. The equivalent conductance of the solution is

1 $\frac{\mathrm{R}}{\mathrm{C}}$
2 $\frac{\mathrm{C}}{\mathrm{R}}$
3 $\frac{1000}{\mathrm{RC}}$
4 $\frac{1000 \mathrm{R}}{\mathrm{C}}$
ELECTROCHEMISTRY

276192 A 0.5 M NaOH solution offers a resistance of $31.6 \mathrm{ohm}$ in a conductivity cell at room temperature. What shall be the approximate molar conductance of this $\mathrm{NaOH}$ solution if cell constant of the cell is $0.367 \mathrm{~cm}^{-1}$ ?

1 $234 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $23.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $4645 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $5464 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276193 The conductivity of a saturated solution of BaSO $_{4}$ is $3.06 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and its equivalent conductance is $1.53 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$. The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{BaSO}_{4}$ will be

1 $4 \times 10^{-12}$
2 $2.5 \times 10^{-9}$
3 $2.5 \times 10^{-13}$
4 $4 \times 10^{-6}$
ELECTROCHEMISTRY

276189 At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240,349 and $229 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively. The equivalent conductance of benzoic acid in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ at the same conditions is

1 80
2 328
3 360
4 408
ELECTROCHEMISTRY

276190 A solution of concentration $C$ g equiv/L has a specific resistance $R$. The equivalent conductance of the solution is

1 $\frac{\mathrm{R}}{\mathrm{C}}$
2 $\frac{\mathrm{C}}{\mathrm{R}}$
3 $\frac{1000}{\mathrm{RC}}$
4 $\frac{1000 \mathrm{R}}{\mathrm{C}}$
ELECTROCHEMISTRY

276192 A 0.5 M NaOH solution offers a resistance of $31.6 \mathrm{ohm}$ in a conductivity cell at room temperature. What shall be the approximate molar conductance of this $\mathrm{NaOH}$ solution if cell constant of the cell is $0.367 \mathrm{~cm}^{-1}$ ?

1 $234 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $23.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $4645 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $5464 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276193 The conductivity of a saturated solution of BaSO $_{4}$ is $3.06 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and its equivalent conductance is $1.53 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$. The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{BaSO}_{4}$ will be

1 $4 \times 10^{-12}$
2 $2.5 \times 10^{-9}$
3 $2.5 \times 10^{-13}$
4 $4 \times 10^{-6}$
ELECTROCHEMISTRY

276189 At a certain temperature and at infinite dilution, the equivalent conductances of sodium benzoate, hydrochloric acid and sodium chloride are 240,349 and $229 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively. The equivalent conductance of benzoic acid in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ at the same conditions is

1 80
2 328
3 360
4 408
ELECTROCHEMISTRY

276190 A solution of concentration $C$ g equiv/L has a specific resistance $R$. The equivalent conductance of the solution is

1 $\frac{\mathrm{R}}{\mathrm{C}}$
2 $\frac{\mathrm{C}}{\mathrm{R}}$
3 $\frac{1000}{\mathrm{RC}}$
4 $\frac{1000 \mathrm{R}}{\mathrm{C}}$
ELECTROCHEMISTRY

276192 A 0.5 M NaOH solution offers a resistance of $31.6 \mathrm{ohm}$ in a conductivity cell at room temperature. What shall be the approximate molar conductance of this $\mathrm{NaOH}$ solution if cell constant of the cell is $0.367 \mathrm{~cm}^{-1}$ ?

1 $234 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $23.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $4645 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $5464 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276193 The conductivity of a saturated solution of BaSO $_{4}$ is $3.06 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and its equivalent conductance is $1.53 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$. The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{BaSO}_{4}$ will be

1 $4 \times 10^{-12}$
2 $2.5 \times 10^{-9}$
3 $2.5 \times 10^{-13}$
4 $4 \times 10^{-6}$