276179 The equivalent conductance of silver nitrate solution at $250^{\circ} \mathrm{C}$ for an infinite dilution was found to be $133.3 \Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$. The transport number of $\mathrm{Ag}^{+}$ions in very dilute solution of $\mathrm{AgNO}_{3}$ is 0.464 . Equivalent conductances of $\mathrm{Ag}^{+}$and $\mathrm{NO}_{3}^{-}$(in $\Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$ ) at infinite dilution are respectively
276183 If the molar conductance values of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ at infinite dilution are respectively $118.88 \times 10^{-4}$ $\mathrm{m}^{2}$ mho $\mathrm{mol}^{-1}$ and $77.33 \times 10^{-4} \mathrm{~m}^{2} \mathrm{mho}^{-1}$ then that of $\mathrm{CaCl}_{2}$ is (in $\mathrm{m}^{2} \mathrm{mho} \mathrm{mol}^{-1}$ )
276187 At $298 \mathrm{~K}$ the molar conductivities at infinite dilution $\left(\Lambda_{\mathrm{m}}^{\circ}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KOH}$ and $\mathrm{KCl}$ are 152.8, 272.6 and $149.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda_{\mathrm{m}}^{0}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{S} \mathrm{cm} \mathrm{mol}^{-1}$ and $\%$ dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\Lambda_{\mathrm{m}}=25.1 \mathrm{~S}$ $\mathbf{c m}^{2} \mathbf{~ m o l}^{-1}$ at the same temperature are
276188 If the values of $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130, 217 and $109 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively, the $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ is
276179 The equivalent conductance of silver nitrate solution at $250^{\circ} \mathrm{C}$ for an infinite dilution was found to be $133.3 \Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$. The transport number of $\mathrm{Ag}^{+}$ions in very dilute solution of $\mathrm{AgNO}_{3}$ is 0.464 . Equivalent conductances of $\mathrm{Ag}^{+}$and $\mathrm{NO}_{3}^{-}$(in $\Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$ ) at infinite dilution are respectively
276183 If the molar conductance values of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ at infinite dilution are respectively $118.88 \times 10^{-4}$ $\mathrm{m}^{2}$ mho $\mathrm{mol}^{-1}$ and $77.33 \times 10^{-4} \mathrm{~m}^{2} \mathrm{mho}^{-1}$ then that of $\mathrm{CaCl}_{2}$ is (in $\mathrm{m}^{2} \mathrm{mho} \mathrm{mol}^{-1}$ )
276187 At $298 \mathrm{~K}$ the molar conductivities at infinite dilution $\left(\Lambda_{\mathrm{m}}^{\circ}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KOH}$ and $\mathrm{KCl}$ are 152.8, 272.6 and $149.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda_{\mathrm{m}}^{0}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{S} \mathrm{cm} \mathrm{mol}^{-1}$ and $\%$ dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\Lambda_{\mathrm{m}}=25.1 \mathrm{~S}$ $\mathbf{c m}^{2} \mathbf{~ m o l}^{-1}$ at the same temperature are
276188 If the values of $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130, 217 and $109 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively, the $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ is
276179 The equivalent conductance of silver nitrate solution at $250^{\circ} \mathrm{C}$ for an infinite dilution was found to be $133.3 \Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$. The transport number of $\mathrm{Ag}^{+}$ions in very dilute solution of $\mathrm{AgNO}_{3}$ is 0.464 . Equivalent conductances of $\mathrm{Ag}^{+}$and $\mathrm{NO}_{3}^{-}$(in $\Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$ ) at infinite dilution are respectively
276183 If the molar conductance values of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ at infinite dilution are respectively $118.88 \times 10^{-4}$ $\mathrm{m}^{2}$ mho $\mathrm{mol}^{-1}$ and $77.33 \times 10^{-4} \mathrm{~m}^{2} \mathrm{mho}^{-1}$ then that of $\mathrm{CaCl}_{2}$ is (in $\mathrm{m}^{2} \mathrm{mho} \mathrm{mol}^{-1}$ )
276187 At $298 \mathrm{~K}$ the molar conductivities at infinite dilution $\left(\Lambda_{\mathrm{m}}^{\circ}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KOH}$ and $\mathrm{KCl}$ are 152.8, 272.6 and $149.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda_{\mathrm{m}}^{0}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{S} \mathrm{cm} \mathrm{mol}^{-1}$ and $\%$ dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\Lambda_{\mathrm{m}}=25.1 \mathrm{~S}$ $\mathbf{c m}^{2} \mathbf{~ m o l}^{-1}$ at the same temperature are
276188 If the values of $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130, 217 and $109 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively, the $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ is
276179 The equivalent conductance of silver nitrate solution at $250^{\circ} \mathrm{C}$ for an infinite dilution was found to be $133.3 \Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$. The transport number of $\mathrm{Ag}^{+}$ions in very dilute solution of $\mathrm{AgNO}_{3}$ is 0.464 . Equivalent conductances of $\mathrm{Ag}^{+}$and $\mathrm{NO}_{3}^{-}$(in $\Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$ ) at infinite dilution are respectively
276183 If the molar conductance values of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ at infinite dilution are respectively $118.88 \times 10^{-4}$ $\mathrm{m}^{2}$ mho $\mathrm{mol}^{-1}$ and $77.33 \times 10^{-4} \mathrm{~m}^{2} \mathrm{mho}^{-1}$ then that of $\mathrm{CaCl}_{2}$ is (in $\mathrm{m}^{2} \mathrm{mho} \mathrm{mol}^{-1}$ )
276187 At $298 \mathrm{~K}$ the molar conductivities at infinite dilution $\left(\Lambda_{\mathrm{m}}^{\circ}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KOH}$ and $\mathrm{KCl}$ are 152.8, 272.6 and $149.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda_{\mathrm{m}}^{0}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{S} \mathrm{cm} \mathrm{mol}^{-1}$ and $\%$ dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\Lambda_{\mathrm{m}}=25.1 \mathrm{~S}$ $\mathbf{c m}^{2} \mathbf{~ m o l}^{-1}$ at the same temperature are
276188 If the values of $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130, 217 and $109 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively, the $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ is
276179 The equivalent conductance of silver nitrate solution at $250^{\circ} \mathrm{C}$ for an infinite dilution was found to be $133.3 \Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$. The transport number of $\mathrm{Ag}^{+}$ions in very dilute solution of $\mathrm{AgNO}_{3}$ is 0.464 . Equivalent conductances of $\mathrm{Ag}^{+}$and $\mathrm{NO}_{3}^{-}$(in $\Omega^{-1} \mathrm{~cm}^{2}$ equiv ${ }^{-1}$ ) at infinite dilution are respectively
276183 If the molar conductance values of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ at infinite dilution are respectively $118.88 \times 10^{-4}$ $\mathrm{m}^{2}$ mho $\mathrm{mol}^{-1}$ and $77.33 \times 10^{-4} \mathrm{~m}^{2} \mathrm{mho}^{-1}$ then that of $\mathrm{CaCl}_{2}$ is (in $\mathrm{m}^{2} \mathrm{mho} \mathrm{mol}^{-1}$ )
276187 At $298 \mathrm{~K}$ the molar conductivities at infinite dilution $\left(\Lambda_{\mathrm{m}}^{\circ}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KOH}$ and $\mathrm{KCl}$ are 152.8, 272.6 and $149.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda_{\mathrm{m}}^{0}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{S} \mathrm{cm} \mathrm{mol}^{-1}$ and $\%$ dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\Lambda_{\mathrm{m}}=25.1 \mathrm{~S}$ $\mathbf{c m}^{2} \mathbf{~ m o l}^{-1}$ at the same temperature are
276188 If the values of $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130, 217 and $109 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively, the $\Lambda_{\infty}$ of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ is