03. Nernst Equation
ELECTROCHEMISTRY

276132 The degree of dissociation $(\alpha)$ of a weak electrolyte, $A_{x} B_{y}$ is related to van't Hoff factor (i) by the expression

1 $\alpha=\frac{i+1}{x+y-1}$
2 $\alpha=\frac{i-1}{(x+y-1)}$
3 $\alpha=\frac{x+y-1}{i-1}$
4 $\alpha=\frac{\mathrm{x}+\mathrm{y}+1}{\mathrm{i}-1}$
ELECTROCHEMISTRY

276126 For n-electron redox reactions of the type $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$, the cell potential can be expressed as

1 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
2 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
3 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}+\frac{\mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
4 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}+\frac{\mathrm{RT}}{\mathrm{nF}} \ln \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
ELECTROCHEMISTRY

276132 The degree of dissociation $(\alpha)$ of a weak electrolyte, $A_{x} B_{y}$ is related to van't Hoff factor (i) by the expression

1 $\alpha=\frac{i+1}{x+y-1}$
2 $\alpha=\frac{i-1}{(x+y-1)}$
3 $\alpha=\frac{x+y-1}{i-1}$
4 $\alpha=\frac{\mathrm{x}+\mathrm{y}+1}{\mathrm{i}-1}$
ELECTROCHEMISTRY

276126 For n-electron redox reactions of the type $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$, the cell potential can be expressed as

1 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
2 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
3 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}+\frac{\mathrm{RT}}{\mathrm{nF}} \log \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$
4 $\mathrm{E}_{\text {(cell) }}=\mathrm{E}_{\text {cell }}^{\circ}+\frac{\mathrm{RT}}{\mathrm{nF}} \ln \frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$