03. Nernst Equation
ELECTROCHEMISTRY

276128 Which of the following relation represents correct relation between standard electrode potential and equilibrium constant?
I. $\log \mathrm{K}=\frac{\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
II. $\mathrm{K}=\mathrm{e}^{\frac{\mathrm{nFE}^{\mathbf{0}}}{\mathrm{RT}}}$
III. $\log K=\frac{-\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
IV. $\log \mathrm{K}=0.4342 \frac{\mathrm{nFE}^{0}}{\mathrm{RT}}$
Choose the correct statement (s).

1 I, II and III are correct
2 II and III are correct
3 I, II and IV are correct
4 I and IV are correct
ELECTROCHEMISTRY

276129 $\lambda^{\circ}$ for $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130,248 and $126.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda^{\circ}{ }_{\mathrm{m}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ will be

1 251.5
2 244.5
3 130
4 504.5
ELECTROCHEMISTRY

276130 For the reaction,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ at $300 \mathrm{~K}$, the value of $\square G^{0}$ is -690.9 R. The equilibrium constant value for the reaction at that temperature is ( $R$ is gas constant)

1 $10 \mathrm{~atm}^{-1}$
2 $10 \mathrm{~atm}$
3 10
4 1
ELECTROCHEMISTRY

276131 If for the cell reaction, $\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}$ Entropy change $\Delta S^{\circ}$ is $96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, then temperature coefficient of the emf of a cell is

1 $5 \times 10^{-4} \mathrm{VK}^{-1}$
2 $1 \times 10^{-3} \mathrm{VK}^{-1}$
3 $2 \times 10^{-3} \mathrm{VK}^{-1}$
4 $9.65 \times 10^{-4} \mathrm{VK}^{-1}$
ELECTROCHEMISTRY

276128 Which of the following relation represents correct relation between standard electrode potential and equilibrium constant?
I. $\log \mathrm{K}=\frac{\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
II. $\mathrm{K}=\mathrm{e}^{\frac{\mathrm{nFE}^{\mathbf{0}}}{\mathrm{RT}}}$
III. $\log K=\frac{-\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
IV. $\log \mathrm{K}=0.4342 \frac{\mathrm{nFE}^{0}}{\mathrm{RT}}$
Choose the correct statement (s).

1 I, II and III are correct
2 II and III are correct
3 I, II and IV are correct
4 I and IV are correct
ELECTROCHEMISTRY

276129 $\lambda^{\circ}$ for $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130,248 and $126.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda^{\circ}{ }_{\mathrm{m}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ will be

1 251.5
2 244.5
3 130
4 504.5
ELECTROCHEMISTRY

276130 For the reaction,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ at $300 \mathrm{~K}$, the value of $\square G^{0}$ is -690.9 R. The equilibrium constant value for the reaction at that temperature is ( $R$ is gas constant)

1 $10 \mathrm{~atm}^{-1}$
2 $10 \mathrm{~atm}$
3 10
4 1
ELECTROCHEMISTRY

276131 If for the cell reaction, $\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}$ Entropy change $\Delta S^{\circ}$ is $96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, then temperature coefficient of the emf of a cell is

1 $5 \times 10^{-4} \mathrm{VK}^{-1}$
2 $1 \times 10^{-3} \mathrm{VK}^{-1}$
3 $2 \times 10^{-3} \mathrm{VK}^{-1}$
4 $9.65 \times 10^{-4} \mathrm{VK}^{-1}$
ELECTROCHEMISTRY

276128 Which of the following relation represents correct relation between standard electrode potential and equilibrium constant?
I. $\log \mathrm{K}=\frac{\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
II. $\mathrm{K}=\mathrm{e}^{\frac{\mathrm{nFE}^{\mathbf{0}}}{\mathrm{RT}}}$
III. $\log K=\frac{-\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
IV. $\log \mathrm{K}=0.4342 \frac{\mathrm{nFE}^{0}}{\mathrm{RT}}$
Choose the correct statement (s).

1 I, II and III are correct
2 II and III are correct
3 I, II and IV are correct
4 I and IV are correct
ELECTROCHEMISTRY

276129 $\lambda^{\circ}$ for $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130,248 and $126.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda^{\circ}{ }_{\mathrm{m}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ will be

1 251.5
2 244.5
3 130
4 504.5
ELECTROCHEMISTRY

276130 For the reaction,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ at $300 \mathrm{~K}$, the value of $\square G^{0}$ is -690.9 R. The equilibrium constant value for the reaction at that temperature is ( $R$ is gas constant)

1 $10 \mathrm{~atm}^{-1}$
2 $10 \mathrm{~atm}$
3 10
4 1
ELECTROCHEMISTRY

276131 If for the cell reaction, $\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}$ Entropy change $\Delta S^{\circ}$ is $96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, then temperature coefficient of the emf of a cell is

1 $5 \times 10^{-4} \mathrm{VK}^{-1}$
2 $1 \times 10^{-3} \mathrm{VK}^{-1}$
3 $2 \times 10^{-3} \mathrm{VK}^{-1}$
4 $9.65 \times 10^{-4} \mathrm{VK}^{-1}$
ELECTROCHEMISTRY

276128 Which of the following relation represents correct relation between standard electrode potential and equilibrium constant?
I. $\log \mathrm{K}=\frac{\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
II. $\mathrm{K}=\mathrm{e}^{\frac{\mathrm{nFE}^{\mathbf{0}}}{\mathrm{RT}}}$
III. $\log K=\frac{-\mathrm{nFE}^{0}}{2.303 \mathrm{RT}}$
IV. $\log \mathrm{K}=0.4342 \frac{\mathrm{nFE}^{0}}{\mathrm{RT}}$
Choose the correct statement (s).

1 I, II and III are correct
2 II and III are correct
3 I, II and IV are correct
4 I and IV are correct
ELECTROCHEMISTRY

276129 $\lambda^{\circ}$ for $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaOH}$ and $\mathrm{NaCl}$ are 130,248 and $126.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively. The $\lambda^{\circ}{ }_{\mathrm{m}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ will be

1 251.5
2 244.5
3 130
4 504.5
ELECTROCHEMISTRY

276130 For the reaction,
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ at $300 \mathrm{~K}$, the value of $\square G^{0}$ is -690.9 R. The equilibrium constant value for the reaction at that temperature is ( $R$ is gas constant)

1 $10 \mathrm{~atm}^{-1}$
2 $10 \mathrm{~atm}$
3 10
4 1
ELECTROCHEMISTRY

276131 If for the cell reaction, $\mathrm{Zn}+\mathrm{Cu}^{2+} \rightleftharpoons \mathrm{Cu}+\mathrm{Zn}^{2+}$ Entropy change $\Delta S^{\circ}$ is $96.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, then temperature coefficient of the emf of a cell is

1 $5 \times 10^{-4} \mathrm{VK}^{-1}$
2 $1 \times 10^{-3} \mathrm{VK}^{-1}$
3 $2 \times 10^{-3} \mathrm{VK}^{-1}$
4 $9.65 \times 10^{-4} \mathrm{VK}^{-1}$