The dissociation of weak electrolyte is given as : $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \rightleftharpoons \mathrm{xA}^{+}+\mathrm{yB}^{-}$ lnitially $\mathrm{L} \quad 0 \quad 0$ At equi $1-\alpha \quad \mathrm{x} \alpha \quad \mathrm{y} \alpha$ Total moles $=1-\alpha+\mathrm{x} \alpha+\mathrm{y} \alpha=1+\alpha(\mathrm{x}+\mathrm{y}-1)$ $\therefore$ Vant's Hoff factor $\begin{array}{r} =\frac{\text { Observed value of colligative property }}{\text { Calculated colligative property }} \\ \mathrm{i}=\frac{1+\alpha(\mathrm{x}+\mathrm{y}-1)}{1} \\ \mathrm{i}=1+\alpha(\mathrm{x}+\mathrm{y}-1) \\ \text { or } \quad \alpha=\frac{\mathrm{i}-1}{(\mathrm{x}+\mathrm{y}-1)} \end{array}$
SRMJEEE - 2008
ELECTROCHEMISTRY
276126
For n-electron redox reactions of the type $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$, the cell potential can be expressed as
The dissociation of weak electrolyte is given as : $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \rightleftharpoons \mathrm{xA}^{+}+\mathrm{yB}^{-}$ lnitially $\mathrm{L} \quad 0 \quad 0$ At equi $1-\alpha \quad \mathrm{x} \alpha \quad \mathrm{y} \alpha$ Total moles $=1-\alpha+\mathrm{x} \alpha+\mathrm{y} \alpha=1+\alpha(\mathrm{x}+\mathrm{y}-1)$ $\therefore$ Vant's Hoff factor $\begin{array}{r} =\frac{\text { Observed value of colligative property }}{\text { Calculated colligative property }} \\ \mathrm{i}=\frac{1+\alpha(\mathrm{x}+\mathrm{y}-1)}{1} \\ \mathrm{i}=1+\alpha(\mathrm{x}+\mathrm{y}-1) \\ \text { or } \quad \alpha=\frac{\mathrm{i}-1}{(\mathrm{x}+\mathrm{y}-1)} \end{array}$
SRMJEEE - 2008
ELECTROCHEMISTRY
276126
For n-electron redox reactions of the type $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$, the cell potential can be expressed as