02. Cell Constant
ELECTROCHEMISTRY

276112 If the $E^{0}$ cell for a given reaction has a negative value, which of the following gives the correct relationship for the values of $\Delta \mathbf{G}^{0}$ and $K_{\mathrm{eq}}$ ?

1 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}<1$
2 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}>1$
3 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}>1$
4 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}<1$
ELECTROCHEMISTRY

276113 A hypothetical electrochemical cell is shown below:
$\mathbf{A}\left \vert\mathbf{A}^{+}(\mathbf{x} \mathbf{M}) \ \vert \mathbf{B}^{+}(\mathbf{y} \mathbf{M})\right \vert \mathbf{B}$
The emf measured is $+0.20 \mathrm{~V}$. The cell reaction is

1 $\mathrm{A}+\mathrm{B}^{+} \rightarrow \mathrm{A}^{+}+\mathrm{B}$
2 $\mathrm{A}^{+}+\mathrm{B} \rightarrow \mathrm{A}+\mathrm{B}^{+}$
3 $\mathrm{A}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{A} ; \mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
4 The cell reaction cannot be predicted.
ELECTROCHEMISTRY

276114 Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is $+0.15 \mathrm{~V}$ and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is $\mathbf{- 0 . 7 4}$. These two couples in their standard state are connected to make a cell. The cell potential will be

1 $+1.19 \mathrm{~V}$
2 $+0.89 \mathrm{~V}$
3 $+0.18 \mathrm{~V}$
4 $+0.83 \mathrm{~V}$
ELECTROCHEMISTRY

276115 A button cell used in watches function as following :
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
If half cell potentials are $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+; \mathrm{E}^{0}=-\mathbf{0 . 7 6} \mathrm{V}$ $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=$ 0.34
The cell potential will be

1 $0.84 \mathrm{~V}$
2 $1.34 \mathrm{~V}$
3 $1.10 \mathrm{~V}$
4 $0.42 \mathrm{~V}$
ELECTROCHEMISTRY

276112 If the $E^{0}$ cell for a given reaction has a negative value, which of the following gives the correct relationship for the values of $\Delta \mathbf{G}^{0}$ and $K_{\mathrm{eq}}$ ?

1 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}<1$
2 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}>1$
3 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}>1$
4 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}<1$
ELECTROCHEMISTRY

276113 A hypothetical electrochemical cell is shown below:
$\mathbf{A}\left \vert\mathbf{A}^{+}(\mathbf{x} \mathbf{M}) \ \vert \mathbf{B}^{+}(\mathbf{y} \mathbf{M})\right \vert \mathbf{B}$
The emf measured is $+0.20 \mathrm{~V}$. The cell reaction is

1 $\mathrm{A}+\mathrm{B}^{+} \rightarrow \mathrm{A}^{+}+\mathrm{B}$
2 $\mathrm{A}^{+}+\mathrm{B} \rightarrow \mathrm{A}+\mathrm{B}^{+}$
3 $\mathrm{A}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{A} ; \mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
4 The cell reaction cannot be predicted.
ELECTROCHEMISTRY

276114 Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is $+0.15 \mathrm{~V}$ and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is $\mathbf{- 0 . 7 4}$. These two couples in their standard state are connected to make a cell. The cell potential will be

1 $+1.19 \mathrm{~V}$
2 $+0.89 \mathrm{~V}$
3 $+0.18 \mathrm{~V}$
4 $+0.83 \mathrm{~V}$
ELECTROCHEMISTRY

276115 A button cell used in watches function as following :
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
If half cell potentials are $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+; \mathrm{E}^{0}=-\mathbf{0 . 7 6} \mathrm{V}$ $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=$ 0.34
The cell potential will be

1 $0.84 \mathrm{~V}$
2 $1.34 \mathrm{~V}$
3 $1.10 \mathrm{~V}$
4 $0.42 \mathrm{~V}$
ELECTROCHEMISTRY

276112 If the $E^{0}$ cell for a given reaction has a negative value, which of the following gives the correct relationship for the values of $\Delta \mathbf{G}^{0}$ and $K_{\mathrm{eq}}$ ?

1 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}<1$
2 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}>1$
3 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}>1$
4 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}<1$
ELECTROCHEMISTRY

276113 A hypothetical electrochemical cell is shown below:
$\mathbf{A}\left \vert\mathbf{A}^{+}(\mathbf{x} \mathbf{M}) \ \vert \mathbf{B}^{+}(\mathbf{y} \mathbf{M})\right \vert \mathbf{B}$
The emf measured is $+0.20 \mathrm{~V}$. The cell reaction is

1 $\mathrm{A}+\mathrm{B}^{+} \rightarrow \mathrm{A}^{+}+\mathrm{B}$
2 $\mathrm{A}^{+}+\mathrm{B} \rightarrow \mathrm{A}+\mathrm{B}^{+}$
3 $\mathrm{A}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{A} ; \mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
4 The cell reaction cannot be predicted.
ELECTROCHEMISTRY

276114 Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is $+0.15 \mathrm{~V}$ and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is $\mathbf{- 0 . 7 4}$. These two couples in their standard state are connected to make a cell. The cell potential will be

1 $+1.19 \mathrm{~V}$
2 $+0.89 \mathrm{~V}$
3 $+0.18 \mathrm{~V}$
4 $+0.83 \mathrm{~V}$
ELECTROCHEMISTRY

276115 A button cell used in watches function as following :
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
If half cell potentials are $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+; \mathrm{E}^{0}=-\mathbf{0 . 7 6} \mathrm{V}$ $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=$ 0.34
The cell potential will be

1 $0.84 \mathrm{~V}$
2 $1.34 \mathrm{~V}$
3 $1.10 \mathrm{~V}$
4 $0.42 \mathrm{~V}$
ELECTROCHEMISTRY

276112 If the $E^{0}$ cell for a given reaction has a negative value, which of the following gives the correct relationship for the values of $\Delta \mathbf{G}^{0}$ and $K_{\mathrm{eq}}$ ?

1 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}<1$
2 $\Delta \mathrm{G}^{0}>0 ; \mathrm{K}_{\mathrm{eq}}>1$
3 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}>1$
4 $\Delta \mathrm{G}^{0}<0 ; \mathrm{K}_{\mathrm{eq}}<1$
ELECTROCHEMISTRY

276113 A hypothetical electrochemical cell is shown below:
$\mathbf{A}\left \vert\mathbf{A}^{+}(\mathbf{x} \mathbf{M}) \ \vert \mathbf{B}^{+}(\mathbf{y} \mathbf{M})\right \vert \mathbf{B}$
The emf measured is $+0.20 \mathrm{~V}$. The cell reaction is

1 $\mathrm{A}+\mathrm{B}^{+} \rightarrow \mathrm{A}^{+}+\mathrm{B}$
2 $\mathrm{A}^{+}+\mathrm{B} \rightarrow \mathrm{A}+\mathrm{B}^{+}$
3 $\mathrm{A}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{A} ; \mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
4 The cell reaction cannot be predicted.
ELECTROCHEMISTRY

276114 Standard electrode potential for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$ couple is $+0.15 \mathrm{~V}$ and that for the $\mathrm{Cr}^{3+} / \mathrm{Cr}$ couple is $\mathbf{- 0 . 7 4}$. These two couples in their standard state are connected to make a cell. The cell potential will be

1 $+1.19 \mathrm{~V}$
2 $+0.89 \mathrm{~V}$
3 $+0.18 \mathrm{~V}$
4 $+0.83 \mathrm{~V}$
ELECTROCHEMISTRY

276115 A button cell used in watches function as following :
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
If half cell potentials are $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+; \mathrm{E}^{0}=-\mathbf{0 . 7 6} \mathrm{V}$ $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=$ 0.34
The cell potential will be

1 $0.84 \mathrm{~V}$
2 $1.34 \mathrm{~V}$
3 $1.10 \mathrm{~V}$
4 $0.42 \mathrm{~V}$