276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is
276108
The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :
276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least
276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is
276108
The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :
276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least
276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is
276108
The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :
276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least
276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is
276108
The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :
276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least
276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is
276108
The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :
276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least