02. Cell Constant
ELECTROCHEMISTRY

276105 Given that the standard potentials $\left(\mathrm{E}^{\circ}\right)$ of $\mathrm{Cu}^{2+}$ $/ \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ are $0.34 \mathrm{~V}$ and $0.522 \mathrm{~V}$ respectively, the $\mathrm{E}^{0}$ of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$is

1 \$-0.158 \mathrm{~V}
2 $+0.158 \mathrm{~V}$
3 $-0.182 \mathrm{~V}$
4 $0.182 \mathrm{~V}$
ELECTROCHEMISTRY

276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is

1 0.219
2 0.291
3 0.301
4 0.194
ELECTROCHEMISTRY

276108 The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :

1 $115.8 \mathrm{~kJ}$
2 $-115.8 \mathrm{~kJ}$
3 $-231.6 \mathrm{~kJ}$
4 $231.6 \mathrm{~kJ}$
ELECTROCHEMISTRY

276110 For the reduction of silver ions with copper metal, the standard cell potential was found to be $+0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy, $\Delta G^{0}$ will be $\left(F=96500 \mathrm{C} \mathrm{mol}^{-1}\right)$

1 $-89.0 \mathrm{~kJ}$
2 $+89.0 \mathrm{~kJ}$
3 $-44.5 \mathrm{~kJ}$
4 $-98.0 \mathrm{~kJ}$
ELECTROCHEMISTRY

276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$
ELECTROCHEMISTRY

276105 Given that the standard potentials $\left(\mathrm{E}^{\circ}\right)$ of $\mathrm{Cu}^{2+}$ $/ \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ are $0.34 \mathrm{~V}$ and $0.522 \mathrm{~V}$ respectively, the $\mathrm{E}^{0}$ of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$is

1 \$-0.158 \mathrm{~V}
2 $+0.158 \mathrm{~V}$
3 $-0.182 \mathrm{~V}$
4 $0.182 \mathrm{~V}$
ELECTROCHEMISTRY

276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is

1 0.219
2 0.291
3 0.301
4 0.194
ELECTROCHEMISTRY

276108 The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :

1 $115.8 \mathrm{~kJ}$
2 $-115.8 \mathrm{~kJ}$
3 $-231.6 \mathrm{~kJ}$
4 $231.6 \mathrm{~kJ}$
ELECTROCHEMISTRY

276110 For the reduction of silver ions with copper metal, the standard cell potential was found to be $+0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy, $\Delta G^{0}$ will be $\left(F=96500 \mathrm{C} \mathrm{mol}^{-1}\right)$

1 $-89.0 \mathrm{~kJ}$
2 $+89.0 \mathrm{~kJ}$
3 $-44.5 \mathrm{~kJ}$
4 $-98.0 \mathrm{~kJ}$
ELECTROCHEMISTRY

276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

276105 Given that the standard potentials $\left(\mathrm{E}^{\circ}\right)$ of $\mathrm{Cu}^{2+}$ $/ \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ are $0.34 \mathrm{~V}$ and $0.522 \mathrm{~V}$ respectively, the $\mathrm{E}^{0}$ of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$is

1 \$-0.158 \mathrm{~V}
2 $+0.158 \mathrm{~V}$
3 $-0.182 \mathrm{~V}$
4 $0.182 \mathrm{~V}$
ELECTROCHEMISTRY

276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is

1 0.219
2 0.291
3 0.301
4 0.194
ELECTROCHEMISTRY

276108 The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :

1 $115.8 \mathrm{~kJ}$
2 $-115.8 \mathrm{~kJ}$
3 $-231.6 \mathrm{~kJ}$
4 $231.6 \mathrm{~kJ}$
ELECTROCHEMISTRY

276110 For the reduction of silver ions with copper metal, the standard cell potential was found to be $+0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy, $\Delta G^{0}$ will be $\left(F=96500 \mathrm{C} \mathrm{mol}^{-1}\right)$

1 $-89.0 \mathrm{~kJ}$
2 $+89.0 \mathrm{~kJ}$
3 $-44.5 \mathrm{~kJ}$
4 $-98.0 \mathrm{~kJ}$
ELECTROCHEMISTRY

276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$
ELECTROCHEMISTRY

276105 Given that the standard potentials $\left(\mathrm{E}^{\circ}\right)$ of $\mathrm{Cu}^{2+}$ $/ \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ are $0.34 \mathrm{~V}$ and $0.522 \mathrm{~V}$ respectively, the $\mathrm{E}^{0}$ of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$is

1 \$-0.158 \mathrm{~V}
2 $+0.158 \mathrm{~V}$
3 $-0.182 \mathrm{~V}$
4 $0.182 \mathrm{~V}$
ELECTROCHEMISTRY

276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is

1 0.219
2 0.291
3 0.301
4 0.194
ELECTROCHEMISTRY

276108 The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :

1 $115.8 \mathrm{~kJ}$
2 $-115.8 \mathrm{~kJ}$
3 $-231.6 \mathrm{~kJ}$
4 $231.6 \mathrm{~kJ}$
ELECTROCHEMISTRY

276110 For the reduction of silver ions with copper metal, the standard cell potential was found to be $+0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy, $\Delta G^{0}$ will be $\left(F=96500 \mathrm{C} \mathrm{mol}^{-1}\right)$

1 $-89.0 \mathrm{~kJ}$
2 $+89.0 \mathrm{~kJ}$
3 $-44.5 \mathrm{~kJ}$
4 $-98.0 \mathrm{~kJ}$
ELECTROCHEMISTRY

276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$
ELECTROCHEMISTRY

276105 Given that the standard potentials $\left(\mathrm{E}^{\circ}\right)$ of $\mathrm{Cu}^{2+}$ $/ \mathrm{Cu}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ are $0.34 \mathrm{~V}$ and $0.522 \mathrm{~V}$ respectively, the $\mathrm{E}^{0}$ of $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$is

1 \$-0.158 \mathrm{~V}
2 $+0.158 \mathrm{~V}$
3 $-0.182 \mathrm{~V}$
4 $0.182 \mathrm{~V}$
ELECTROCHEMISTRY

276107 The resistance of $0.01 \mathrm{~m} \mathrm{KCl}$ solution at $298 \mathrm{~K}$ is $1500 \Omega$. If the conductivity of $0.01 \mathrm{~m} \mathrm{KCl}$ is solution at $298 \mathrm{~K}$ is $0.146 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in $\mathrm{cm}^{-1}$ is

1 0.219
2 0.291
3 0.301
4 0.194
ELECTROCHEMISTRY

276108 The standard reduction potentials for two halfcell reactions are given below.
$\begin{aligned}
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightarrow \mathrm{Cd}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=-\mathbf{0 . 4 0} \mathrm{V} \\
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} & \rightarrow \operatorname{Ag}(\mathrm{s}) ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 8 0} \mathrm{V}
\end{aligned}$
The standard free energy change for the reaction\$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cd}^{2+}(\mathrm{aq})$
is given by :

1 $115.8 \mathrm{~kJ}$
2 $-115.8 \mathrm{~kJ}$
3 $-231.6 \mathrm{~kJ}$
4 $231.6 \mathrm{~kJ}$
ELECTROCHEMISTRY

276110 For the reduction of silver ions with copper metal, the standard cell potential was found to be $+0.46 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. The value of standard Gibbs energy, $\Delta G^{0}$ will be $\left(F=96500 \mathrm{C} \mathrm{mol}^{-1}\right)$

1 $-89.0 \mathrm{~kJ}$
2 $+89.0 \mathrm{~kJ}$
3 $-44.5 \mathrm{~kJ}$
4 $-98.0 \mathrm{~kJ}$
ELECTROCHEMISTRY

276111 The Gibbs' energy for the decomposition of $\begin{array}{llllll}\mathrm{Al}_{2} \mathrm{O}_{3} & \text { at } & 500 & { }^{\circ} \mathrm{C} & \text { is as follows }\end{array}$ $\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}, \Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The potential difference needed for the electrolytic reduction of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $500{ }^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$