276118
Cell equation:
$\mathrm{A}+2 \mathrm{~B}^{2+} \rightarrow \mathrm{A}^{2+}+2 \mathrm{~B}$
$\mathrm{A}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{A} \quad \mathrm{E}^{0}=+0.34 \mathrm{~V}$
and $\log _{10} K=15.6$ at $300 K$ for cell reactions.
Find $\mathbf{E}^{0}$ for $\mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
Given $\left[\frac{2.303 R T}{F}=0.059\right]$ at $300 \mathrm{~K}$
276119
Consider the following cell reaction:
\$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow
$2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) ; \mathrm{E}^{0}=1.67 \mathrm{~V}$
$\operatorname{At}\left[\mathrm{Fe}^{2+}\right]=10^{-3} \mathrm{M}, \mathrm{p}\left(\mathrm{O}_{2}\right)=0.1$ atm and $\mathrm{pH}=3$, the cell potential at $25^{\circ} \mathrm{C}$ is
276118
Cell equation:
$\mathrm{A}+2 \mathrm{~B}^{2+} \rightarrow \mathrm{A}^{2+}+2 \mathrm{~B}$
$\mathrm{A}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{A} \quad \mathrm{E}^{0}=+0.34 \mathrm{~V}$
and $\log _{10} K=15.6$ at $300 K$ for cell reactions.
Find $\mathbf{E}^{0}$ for $\mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
Given $\left[\frac{2.303 R T}{F}=0.059\right]$ at $300 \mathrm{~K}$
276119
Consider the following cell reaction:
\$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow
$2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) ; \mathrm{E}^{0}=1.67 \mathrm{~V}$
$\operatorname{At}\left[\mathrm{Fe}^{2+}\right]=10^{-3} \mathrm{M}, \mathrm{p}\left(\mathrm{O}_{2}\right)=0.1$ atm and $\mathrm{pH}=3$, the cell potential at $25^{\circ} \mathrm{C}$ is
276118
Cell equation:
$\mathrm{A}+2 \mathrm{~B}^{2+} \rightarrow \mathrm{A}^{2+}+2 \mathrm{~B}$
$\mathrm{A}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{A} \quad \mathrm{E}^{0}=+0.34 \mathrm{~V}$
and $\log _{10} K=15.6$ at $300 K$ for cell reactions.
Find $\mathbf{E}^{0}$ for $\mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
Given $\left[\frac{2.303 R T}{F}=0.059\right]$ at $300 \mathrm{~K}$
276119
Consider the following cell reaction:
\$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow
$2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) ; \mathrm{E}^{0}=1.67 \mathrm{~V}$
$\operatorname{At}\left[\mathrm{Fe}^{2+}\right]=10^{-3} \mathrm{M}, \mathrm{p}\left(\mathrm{O}_{2}\right)=0.1$ atm and $\mathrm{pH}=3$, the cell potential at $25^{\circ} \mathrm{C}$ is
276118
Cell equation:
$\mathrm{A}+2 \mathrm{~B}^{2+} \rightarrow \mathrm{A}^{2+}+2 \mathrm{~B}$
$\mathrm{A}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{A} \quad \mathrm{E}^{0}=+0.34 \mathrm{~V}$
and $\log _{10} K=15.6$ at $300 K$ for cell reactions.
Find $\mathbf{E}^{0}$ for $\mathrm{B}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{B}$
Given $\left[\frac{2.303 R T}{F}=0.059\right]$ at $300 \mathrm{~K}$
276119
Consider the following cell reaction:
\$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow
$2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) ; \mathrm{E}^{0}=1.67 \mathrm{~V}$
$\operatorname{At}\left[\mathrm{Fe}^{2+}\right]=10^{-3} \mathrm{M}, \mathrm{p}\left(\mathrm{O}_{2}\right)=0.1$ atm and $\mathrm{pH}=3$, the cell potential at $25^{\circ} \mathrm{C}$ is