00. Electrode Potential
ELECTROCHEMISTRY

275945 $\mathrm{E}^{0}$ values for $\mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}, \mathrm{Zn}^{2+} / \mathrm{Zn}=$ $-0.76 \mathrm{~V}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}=-0.44 \mathrm{~V}$. Which statement is correct?

1 $\mathrm{Zn}$ reduces $\mathrm{Fe}^{2+}$
2 $\mathrm{Zn}$ reduces $\mathrm{Mg}^{2+}$
3 $\mathrm{Mg}$ oxidises $\mathrm{Fe}$
4 $\mathrm{Zn}$ oxidises $\mathrm{Fe}$
ELECTROCHEMISTRY

275959 The standard electrode potentials of the halfcells are given as below:
$\begin{aligned}
& \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}, \mathbf{E}^{\circ}=0.76 \mathrm{~V} \\
& \mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}, \mathrm{E}^{\circ}=\mathbf{0 . 4 4 V}
\end{aligned}$
The E.M.F of the cell reaction:
$\begin{array}{ll}
\mathbf{Z n}+\mathbf{F e}^{2+} \rightarrow \mathbf{Z n}^{2+}+\mathbf{F e} \text { is } \\
\begin{array}{ll}
\text { (a) }-0.32 \mathrm{~V} & \text { (b) }+0.32 \mathrm{~V} \\
\text { (c) }+1.20 \mathrm{~V} & \text { (d) }-1.20 \mathrm{~V}
\end{array}
\end{array}$

1 $-0.32 \mathrm{~V}$
2 $+0.32 \mathrm{~V}$
3 0$+1.20 \mathrm{~V}$
4 $-1.20 \mathrm{~V}$
ELECTROCHEMISTRY

275960 The standard redox potential (reduction reaction) of $\mathrm{Pt} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{-}, \mathrm{Cr}^{+3} ; \mathrm{Pt} / \mathrm{MnO}_{4}^{-}, \mathrm{Mn}^{2+}$; $\mathrm{Pt} / \mathrm{Ce}^{+4}, \mathrm{Ce}^{+3}$ in the presence of acid are $1.33 \mathrm{~V}$, $1.51 \mathrm{~V}$ and $1.61 \mathrm{~V}$ respectively at $25^{\circ} \mathrm{C}$. The oxidising power of these systems decrease in the order

1 $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}$
2 $\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{Ce}^{+4}$
3 $\mathrm{Ce}^{+4}>\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
4 $\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
ELECTROCHEMISTRY

275964 The equilibrium constant of the reaction:
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$;
$E^{0}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$ is

1 $2.0 \times 10^{10}$
2 $4.0 \times 10^{10}$
3 $4.0 \times 10^{15}$
4 $2.4 \times 10^{10}$
ELECTROCHEMISTRY

275945 $\mathrm{E}^{0}$ values for $\mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}, \mathrm{Zn}^{2+} / \mathrm{Zn}=$ $-0.76 \mathrm{~V}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}=-0.44 \mathrm{~V}$. Which statement is correct?

1 $\mathrm{Zn}$ reduces $\mathrm{Fe}^{2+}$
2 $\mathrm{Zn}$ reduces $\mathrm{Mg}^{2+}$
3 $\mathrm{Mg}$ oxidises $\mathrm{Fe}$
4 $\mathrm{Zn}$ oxidises $\mathrm{Fe}$
ELECTROCHEMISTRY

275959 The standard electrode potentials of the halfcells are given as below:
$\begin{aligned}
& \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}, \mathbf{E}^{\circ}=0.76 \mathrm{~V} \\
& \mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}, \mathrm{E}^{\circ}=\mathbf{0 . 4 4 V}
\end{aligned}$
The E.M.F of the cell reaction:
$\begin{array}{ll}
\mathbf{Z n}+\mathbf{F e}^{2+} \rightarrow \mathbf{Z n}^{2+}+\mathbf{F e} \text { is } \\
\begin{array}{ll}
\text { (a) }-0.32 \mathrm{~V} & \text { (b) }+0.32 \mathrm{~V} \\
\text { (c) }+1.20 \mathrm{~V} & \text { (d) }-1.20 \mathrm{~V}
\end{array}
\end{array}$

1 $-0.32 \mathrm{~V}$
2 $+0.32 \mathrm{~V}$
3 0$+1.20 \mathrm{~V}$
4 $-1.20 \mathrm{~V}$
ELECTROCHEMISTRY

275960 The standard redox potential (reduction reaction) of $\mathrm{Pt} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{-}, \mathrm{Cr}^{+3} ; \mathrm{Pt} / \mathrm{MnO}_{4}^{-}, \mathrm{Mn}^{2+}$; $\mathrm{Pt} / \mathrm{Ce}^{+4}, \mathrm{Ce}^{+3}$ in the presence of acid are $1.33 \mathrm{~V}$, $1.51 \mathrm{~V}$ and $1.61 \mathrm{~V}$ respectively at $25^{\circ} \mathrm{C}$. The oxidising power of these systems decrease in the order

1 $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}$
2 $\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{Ce}^{+4}$
3 $\mathrm{Ce}^{+4}>\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
4 $\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
ELECTROCHEMISTRY

275964 The equilibrium constant of the reaction:
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$;
$E^{0}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$ is

1 $2.0 \times 10^{10}$
2 $4.0 \times 10^{10}$
3 $4.0 \times 10^{15}$
4 $2.4 \times 10^{10}$
ELECTROCHEMISTRY

275945 $\mathrm{E}^{0}$ values for $\mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}, \mathrm{Zn}^{2+} / \mathrm{Zn}=$ $-0.76 \mathrm{~V}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}=-0.44 \mathrm{~V}$. Which statement is correct?

1 $\mathrm{Zn}$ reduces $\mathrm{Fe}^{2+}$
2 $\mathrm{Zn}$ reduces $\mathrm{Mg}^{2+}$
3 $\mathrm{Mg}$ oxidises $\mathrm{Fe}$
4 $\mathrm{Zn}$ oxidises $\mathrm{Fe}$
ELECTROCHEMISTRY

275959 The standard electrode potentials of the halfcells are given as below:
$\begin{aligned}
& \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}, \mathbf{E}^{\circ}=0.76 \mathrm{~V} \\
& \mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}, \mathrm{E}^{\circ}=\mathbf{0 . 4 4 V}
\end{aligned}$
The E.M.F of the cell reaction:
$\begin{array}{ll}
\mathbf{Z n}+\mathbf{F e}^{2+} \rightarrow \mathbf{Z n}^{2+}+\mathbf{F e} \text { is } \\
\begin{array}{ll}
\text { (a) }-0.32 \mathrm{~V} & \text { (b) }+0.32 \mathrm{~V} \\
\text { (c) }+1.20 \mathrm{~V} & \text { (d) }-1.20 \mathrm{~V}
\end{array}
\end{array}$

1 $-0.32 \mathrm{~V}$
2 $+0.32 \mathrm{~V}$
3 0$+1.20 \mathrm{~V}$
4 $-1.20 \mathrm{~V}$
ELECTROCHEMISTRY

275960 The standard redox potential (reduction reaction) of $\mathrm{Pt} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{-}, \mathrm{Cr}^{+3} ; \mathrm{Pt} / \mathrm{MnO}_{4}^{-}, \mathrm{Mn}^{2+}$; $\mathrm{Pt} / \mathrm{Ce}^{+4}, \mathrm{Ce}^{+3}$ in the presence of acid are $1.33 \mathrm{~V}$, $1.51 \mathrm{~V}$ and $1.61 \mathrm{~V}$ respectively at $25^{\circ} \mathrm{C}$. The oxidising power of these systems decrease in the order

1 $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}$
2 $\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{Ce}^{+4}$
3 $\mathrm{Ce}^{+4}>\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
4 $\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
ELECTROCHEMISTRY

275964 The equilibrium constant of the reaction:
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$;
$E^{0}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$ is

1 $2.0 \times 10^{10}$
2 $4.0 \times 10^{10}$
3 $4.0 \times 10^{15}$
4 $2.4 \times 10^{10}$
ELECTROCHEMISTRY

275945 $\mathrm{E}^{0}$ values for $\mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}, \mathrm{Zn}^{2+} / \mathrm{Zn}=$ $-0.76 \mathrm{~V}$ and $\mathrm{Fe}^{2+} / \mathrm{Fe}=-0.44 \mathrm{~V}$. Which statement is correct?

1 $\mathrm{Zn}$ reduces $\mathrm{Fe}^{2+}$
2 $\mathrm{Zn}$ reduces $\mathrm{Mg}^{2+}$
3 $\mathrm{Mg}$ oxidises $\mathrm{Fe}$
4 $\mathrm{Zn}$ oxidises $\mathrm{Fe}$
ELECTROCHEMISTRY

275959 The standard electrode potentials of the halfcells are given as below:
$\begin{aligned}
& \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}, \mathbf{E}^{\circ}=0.76 \mathrm{~V} \\
& \mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}, \mathrm{E}^{\circ}=\mathbf{0 . 4 4 V}
\end{aligned}$
The E.M.F of the cell reaction:
$\begin{array}{ll}
\mathbf{Z n}+\mathbf{F e}^{2+} \rightarrow \mathbf{Z n}^{2+}+\mathbf{F e} \text { is } \\
\begin{array}{ll}
\text { (a) }-0.32 \mathrm{~V} & \text { (b) }+0.32 \mathrm{~V} \\
\text { (c) }+1.20 \mathrm{~V} & \text { (d) }-1.20 \mathrm{~V}
\end{array}
\end{array}$

1 $-0.32 \mathrm{~V}$
2 $+0.32 \mathrm{~V}$
3 0$+1.20 \mathrm{~V}$
4 $-1.20 \mathrm{~V}$
ELECTROCHEMISTRY

275960 The standard redox potential (reduction reaction) of $\mathrm{Pt} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{-}, \mathrm{Cr}^{+3} ; \mathrm{Pt} / \mathrm{MnO}_{4}^{-}, \mathrm{Mn}^{2+}$; $\mathrm{Pt} / \mathrm{Ce}^{+4}, \mathrm{Ce}^{+3}$ in the presence of acid are $1.33 \mathrm{~V}$, $1.51 \mathrm{~V}$ and $1.61 \mathrm{~V}$ respectively at $25^{\circ} \mathrm{C}$. The oxidising power of these systems decrease in the order

1 $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}$
2 $\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}>\mathrm{Ce}^{+4}$
3 $\mathrm{Ce}^{+4}>\mathrm{MnO}_{4}^{-}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
4 $\mathrm{MnO}_{4}^{-}>\mathrm{Ce}^{+4}>\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
ELECTROCHEMISTRY

275964 The equilibrium constant of the reaction:
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$;
$E^{0}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$ is

1 $2.0 \times 10^{10}$
2 $4.0 \times 10^{10}$
3 $4.0 \times 10^{15}$
4 $2.4 \times 10^{10}$