275967
For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$
275969
Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275967
For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$
275969
Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275967
For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$
275969
Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275967
For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$
275969
Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$