00. Electrode Potential
ELECTROCHEMISTRY

275966 $\mathrm{Zn}^{2+} \rightarrow \operatorname{Zn}(\mathrm{s}) ; \mathrm{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}(\mathrm{s}) ; \mathrm{E}^{0}=-0.34 \mathrm{~V}$
Which of the following is spontaneous?

1 $\mathrm{Zn}^{2+}+\mathrm{Cu} \rightarrow \mathrm{Zn}+\mathrm{Cu}^{2+}$
2 $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}$
3 $\mathrm{Zn}^{2+}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}+\mathrm{Cu}$
4 None of the above
ELECTROCHEMISTRY

275967 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275968 When 3.86 $\mathrm{A}$ current is passed through an electrolyte for $50 \mathrm{~min}, 2.4 \mathrm{~g}$ of a divalent metal is deposited. The gram atomic weight of the metal (in grams) is

1 24
2 12
3 64
4 40
ELECTROCHEMISTRY

275969 Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $+0.46 \mathrm{~V}$
2 $+1.14 \mathrm{~V}$
3 $+0.57 \mathrm{~V}$
4 $-0.46 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

275966 $\mathrm{Zn}^{2+} \rightarrow \operatorname{Zn}(\mathrm{s}) ; \mathrm{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}(\mathrm{s}) ; \mathrm{E}^{0}=-0.34 \mathrm{~V}$
Which of the following is spontaneous?

1 $\mathrm{Zn}^{2+}+\mathrm{Cu} \rightarrow \mathrm{Zn}+\mathrm{Cu}^{2+}$
2 $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}$
3 $\mathrm{Zn}^{2+}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}+\mathrm{Cu}$
4 None of the above
ELECTROCHEMISTRY

275967 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275968 When 3.86 $\mathrm{A}$ current is passed through an electrolyte for $50 \mathrm{~min}, 2.4 \mathrm{~g}$ of a divalent metal is deposited. The gram atomic weight of the metal (in grams) is

1 24
2 12
3 64
4 40
ELECTROCHEMISTRY

275969 Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $+0.46 \mathrm{~V}$
2 $+1.14 \mathrm{~V}$
3 $+0.57 \mathrm{~V}$
4 $-0.46 \mathrm{~V}$
ELECTROCHEMISTRY

275966 $\mathrm{Zn}^{2+} \rightarrow \operatorname{Zn}(\mathrm{s}) ; \mathrm{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}(\mathrm{s}) ; \mathrm{E}^{0}=-0.34 \mathrm{~V}$
Which of the following is spontaneous?

1 $\mathrm{Zn}^{2+}+\mathrm{Cu} \rightarrow \mathrm{Zn}+\mathrm{Cu}^{2+}$
2 $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}$
3 $\mathrm{Zn}^{2+}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}+\mathrm{Cu}$
4 None of the above
ELECTROCHEMISTRY

275967 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275968 When 3.86 $\mathrm{A}$ current is passed through an electrolyte for $50 \mathrm{~min}, 2.4 \mathrm{~g}$ of a divalent metal is deposited. The gram atomic weight of the metal (in grams) is

1 24
2 12
3 64
4 40
ELECTROCHEMISTRY

275969 Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $+0.46 \mathrm{~V}$
2 $+1.14 \mathrm{~V}$
3 $+0.57 \mathrm{~V}$
4 $-0.46 \mathrm{~V}$
ELECTROCHEMISTRY

275966 $\mathrm{Zn}^{2+} \rightarrow \operatorname{Zn}(\mathrm{s}) ; \mathrm{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}(\mathrm{s}) ; \mathrm{E}^{0}=-0.34 \mathrm{~V}$
Which of the following is spontaneous?

1 $\mathrm{Zn}^{2+}+\mathrm{Cu} \rightarrow \mathrm{Zn}+\mathrm{Cu}^{2+}$
2 $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}$
3 $\mathrm{Zn}^{2+}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}+\mathrm{Cu}$
4 None of the above
ELECTROCHEMISTRY

275967 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(\mathbf{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell, $E_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275968 When 3.86 $\mathrm{A}$ current is passed through an electrolyte for $50 \mathrm{~min}, 2.4 \mathrm{~g}$ of a divalent metal is deposited. The gram atomic weight of the metal (in grams) is

1 24
2 12
3 64
4 40
ELECTROCHEMISTRY

275969 Calculate the emf of the cell
$\mathbf{C u}(\mathrm{s})\left \vert\mathbf{C u}^{2+}(\mathrm{aq}) \ \vert \mathbf{A g}^{+}(\mathbf{a q})\right \vert \mathbf{A g}(\mathrm{s})$
Given
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathbf{0}}=+\mathbf{0 . 3 4} \mathrm{V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $+0.46 \mathrm{~V}$
2 $+1.14 \mathrm{~V}$
3 $+0.57 \mathrm{~V}$
4 $-0.46 \mathrm{~V}$