275926
Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,
275929
The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be
275932
The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least
275926
Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,
275929
The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be
275932
The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least
275926
Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,
275929
The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be
275932
The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least
275926
Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,
275929
The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be
275932
The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least