00. Electrode Potential
ELECTROCHEMISTRY

275926 Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,

1 +1.35
2 +2.55
3 -1.35
4 -2.55
ELECTROCHEMISTRY

275929 The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be

1 $-0.42 \mathrm{~V}$
2 $-2.20 \mathrm{~V}$
3 $-0.52 \mathrm{~V}$
4 $1.04 \mathrm{~V}$
ELECTROCHEMISTRY

275931 Copper sulphate solution is electrolysed using copper electrode. The reaction taking place at anode is

1 $\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{H}$
2 $\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}+2 \mathrm{e}$
3 $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
4 $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
ELECTROCHEMISTRY

275932 The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$
ELECTROCHEMISTRY

275926 Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,

1 +1.35
2 +2.55
3 -1.35
4 -2.55
ELECTROCHEMISTRY

275929 The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be

1 $-0.42 \mathrm{~V}$
2 $-2.20 \mathrm{~V}$
3 $-0.52 \mathrm{~V}$
4 $1.04 \mathrm{~V}$
ELECTROCHEMISTRY

275931 Copper sulphate solution is electrolysed using copper electrode. The reaction taking place at anode is

1 $\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{H}$
2 $\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}+2 \mathrm{e}$
3 $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
4 $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
ELECTROCHEMISTRY

275932 The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$
ELECTROCHEMISTRY

275926 Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,

1 +1.35
2 +2.55
3 -1.35
4 -2.55
ELECTROCHEMISTRY

275929 The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be

1 $-0.42 \mathrm{~V}$
2 $-2.20 \mathrm{~V}$
3 $-0.52 \mathrm{~V}$
4 $1.04 \mathrm{~V}$
ELECTROCHEMISTRY

275931 Copper sulphate solution is electrolysed using copper electrode. The reaction taking place at anode is

1 $\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{H}$
2 $\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}+2 \mathrm{e}$
3 $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
4 $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
ELECTROCHEMISTRY

275932 The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$
ELECTROCHEMISTRY

275926 Given, for $\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}$, standard reduction potential is $0.15 \mathrm{~V}$ and for $\mathrm{Au}^{3+} / \mathrm{Au}$, standard reduction potential is $1.5 \mathrm{~V}$.
For the reaction,
$3 \mathrm{Sn}^{2+}+2 \mathrm{Au}^{3+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Au}$,
the value of $\mathbf{E}_{\text {cell }}^{\circ}$ is,

1 +1.35
2 +2.55
3 -1.35
4 -2.55
ELECTROCHEMISTRY

275929 The standard electrode potential $\left(\mathrm{E}^{0}\right)$ for $\mathrm{OCl}^{-} /$
$\mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ respectively are $0.94 \mathrm{~V}$ and
$-1.36 \mathrm{~V}$. The $\mathrm{E}^{0}$ value for $\mathrm{OCl}^{-} / \frac{1}{2} \mathrm{Cl}_{2}$ will be

1 $-0.42 \mathrm{~V}$
2 $-2.20 \mathrm{~V}$
3 $-0.52 \mathrm{~V}$
4 $1.04 \mathrm{~V}$
ELECTROCHEMISTRY

275931 Copper sulphate solution is electrolysed using copper electrode. The reaction taking place at anode is

1 $\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{H}$
2 $\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}+2 \mathrm{e}$
3 $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
4 $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
ELECTROCHEMISTRY

275932 The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows
$\frac{2}{3} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \frac{4}{3} \mathrm{Al}+\mathrm{O}_{2}$
$\Delta_{\mathrm{r}} \mathrm{G}=+966 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The potential difference needed for electrolytic reduction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is at least

1 $4.5 \mathrm{~V}$
2 $3.0 \mathrm{~V}$
3 $2.5 \mathrm{~V}$
4 $5.0 \mathrm{~V}$