275772
In the electrochemical cell:
$\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(\mathbf{0 . 0 1} \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 . 0} \mathrm{M})\right \vert \mathrm{Cu}$, the emf of this Daniell cell is $E_{1}$. When the concentration of $\mathrm{ZnSO}_{4}$ is changed to $1.0 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ changed to $0.01 \mathrm{M}$, the emf changes to $E_{2}$. From the following which one is the relationship between $E_{1}$ and $E_{2}$ ? (Given, $\mathbf{R T} \mid \mathbf{F}=\mathbf{0 . 0 5 9}$ )
275773
On the basis of the following $E^{0}$ values, the strongest oxidizing agent is
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.35 \mathrm{~V}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.77 \mathrm{~V}$
275772
In the electrochemical cell:
$\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(\mathbf{0 . 0 1} \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 . 0} \mathrm{M})\right \vert \mathrm{Cu}$, the emf of this Daniell cell is $E_{1}$. When the concentration of $\mathrm{ZnSO}_{4}$ is changed to $1.0 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ changed to $0.01 \mathrm{M}$, the emf changes to $E_{2}$. From the following which one is the relationship between $E_{1}$ and $E_{2}$ ? (Given, $\mathbf{R T} \mid \mathbf{F}=\mathbf{0 . 0 5 9}$ )
275773
On the basis of the following $E^{0}$ values, the strongest oxidizing agent is
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.35 \mathrm{~V}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.77 \mathrm{~V}$
275772
In the electrochemical cell:
$\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(\mathbf{0 . 0 1} \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 . 0} \mathrm{M})\right \vert \mathrm{Cu}$, the emf of this Daniell cell is $E_{1}$. When the concentration of $\mathrm{ZnSO}_{4}$ is changed to $1.0 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ changed to $0.01 \mathrm{M}$, the emf changes to $E_{2}$. From the following which one is the relationship between $E_{1}$ and $E_{2}$ ? (Given, $\mathbf{R T} \mid \mathbf{F}=\mathbf{0 . 0 5 9}$ )
275773
On the basis of the following $E^{0}$ values, the strongest oxidizing agent is
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.35 \mathrm{~V}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.77 \mathrm{~V}$
275772
In the electrochemical cell:
$\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(\mathbf{0 . 0 1} \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 . 0} \mathrm{M})\right \vert \mathrm{Cu}$, the emf of this Daniell cell is $E_{1}$. When the concentration of $\mathrm{ZnSO}_{4}$ is changed to $1.0 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ changed to $0.01 \mathrm{M}$, the emf changes to $E_{2}$. From the following which one is the relationship between $E_{1}$ and $E_{2}$ ? (Given, $\mathbf{R T} \mid \mathbf{F}=\mathbf{0 . 0 5 9}$ )
275773
On the basis of the following $E^{0}$ values, the strongest oxidizing agent is
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.35 \mathrm{~V}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.77 \mathrm{~V}$