00. Electrode Potential
ELECTROCHEMISTRY

275766 For the following cell reaction,
$\mathrm{Ag} \vert\mathrm{Ag}+/ \mathrm{AgCl} \vert \mathrm{Cl}^{-} \mid \mathrm{Cl}_{2}, \mathrm{Pt}$
$\Delta G_{\mathrm{f}}^{0}(\mathrm{AgCl})=-109 \mathrm{~kJ} / \mathrm{mol}$
$\begin{aligned}
& \Delta G_{\mathrm{f}}^{0}\left(\mathrm{Cl}^{-}\right)=-129 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{\mathrm{f}}^{0}\left(\mathbf{A g}^{+}\right)=78 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}$
$\mathrm{E}^{\circ}$ of the cell is

1 $-0.60 \mathrm{~V}$
2 $0.60 \mathrm{~V}$
3 $6.0 \mathrm{~V}$
4 none of these
ELECTROCHEMISTRY

275767 Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are

1 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and dissolved oxygen in water is reduced to $\mathrm{OH}^{-}$
2 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{3+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
3 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
4 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}$
ELECTROCHEMISTRY

275768 For cell reaction
$\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
cell representation is :

1 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}\right \vert\left \vert\mathrm{Cu}^{2+}\right \vert \mathrm{Cu}$
2 $\mathrm{Cu}\left \vert\mathrm{Cu}^{2+}\right \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn}$
3 $\mathrm{Cu}\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn} \mid \mathrm{Cu}^{2+}$
4 $\mathrm{Cu}^{2+} \vert\mathrm{Zn} \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Cu}$
ELECTROCHEMISTRY

275769 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(1 \mathrm{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell $\mathrm{E}_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for
the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275770 The standard electrode potential of three metals $X, Y$ and $Z$ are $-1.2 \mathrm{~V},+0.5$ and $-3.0 \mathrm{~V}$ respectively. The reducing power of these metals will be

1 $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
2 Y $>$ Z $>$ X
3 $Y>X>Z$
4 $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$
ELECTROCHEMISTRY

275766 For the following cell reaction,
$\mathrm{Ag} \vert\mathrm{Ag}+/ \mathrm{AgCl} \vert \mathrm{Cl}^{-} \mid \mathrm{Cl}_{2}, \mathrm{Pt}$
$\Delta G_{\mathrm{f}}^{0}(\mathrm{AgCl})=-109 \mathrm{~kJ} / \mathrm{mol}$
$\begin{aligned}
& \Delta G_{\mathrm{f}}^{0}\left(\mathrm{Cl}^{-}\right)=-129 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{\mathrm{f}}^{0}\left(\mathbf{A g}^{+}\right)=78 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}$
$\mathrm{E}^{\circ}$ of the cell is

1 $-0.60 \mathrm{~V}$
2 $0.60 \mathrm{~V}$
3 $6.0 \mathrm{~V}$
4 none of these
ELECTROCHEMISTRY

275767 Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are

1 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and dissolved oxygen in water is reduced to $\mathrm{OH}^{-}$
2 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{3+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
3 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
4 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}$
ELECTROCHEMISTRY

275768 For cell reaction
$\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
cell representation is :

1 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}\right \vert\left \vert\mathrm{Cu}^{2+}\right \vert \mathrm{Cu}$
2 $\mathrm{Cu}\left \vert\mathrm{Cu}^{2+}\right \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn}$
3 $\mathrm{Cu}\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn} \mid \mathrm{Cu}^{2+}$
4 $\mathrm{Cu}^{2+} \vert\mathrm{Zn} \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Cu}$
ELECTROCHEMISTRY

275769 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(1 \mathrm{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell $\mathrm{E}_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for
the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275770 The standard electrode potential of three metals $X, Y$ and $Z$ are $-1.2 \mathrm{~V},+0.5$ and $-3.0 \mathrm{~V}$ respectively. The reducing power of these metals will be

1 $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
2 Y $>$ Z $>$ X
3 $Y>X>Z$
4 $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$
ELECTROCHEMISTRY

275766 For the following cell reaction,
$\mathrm{Ag} \vert\mathrm{Ag}+/ \mathrm{AgCl} \vert \mathrm{Cl}^{-} \mid \mathrm{Cl}_{2}, \mathrm{Pt}$
$\Delta G_{\mathrm{f}}^{0}(\mathrm{AgCl})=-109 \mathrm{~kJ} / \mathrm{mol}$
$\begin{aligned}
& \Delta G_{\mathrm{f}}^{0}\left(\mathrm{Cl}^{-}\right)=-129 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{\mathrm{f}}^{0}\left(\mathbf{A g}^{+}\right)=78 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}$
$\mathrm{E}^{\circ}$ of the cell is

1 $-0.60 \mathrm{~V}$
2 $0.60 \mathrm{~V}$
3 $6.0 \mathrm{~V}$
4 none of these
ELECTROCHEMISTRY

275767 Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are

1 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and dissolved oxygen in water is reduced to $\mathrm{OH}^{-}$
2 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{3+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
3 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
4 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}$
ELECTROCHEMISTRY

275768 For cell reaction
$\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
cell representation is :

1 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}\right \vert\left \vert\mathrm{Cu}^{2+}\right \vert \mathrm{Cu}$
2 $\mathrm{Cu}\left \vert\mathrm{Cu}^{2+}\right \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn}$
3 $\mathrm{Cu}\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn} \mid \mathrm{Cu}^{2+}$
4 $\mathrm{Cu}^{2+} \vert\mathrm{Zn} \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Cu}$
ELECTROCHEMISTRY

275769 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(1 \mathrm{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell $\mathrm{E}_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for
the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275770 The standard electrode potential of three metals $X, Y$ and $Z$ are $-1.2 \mathrm{~V},+0.5$ and $-3.0 \mathrm{~V}$ respectively. The reducing power of these metals will be

1 $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
2 Y $>$ Z $>$ X
3 $Y>X>Z$
4 $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$
ELECTROCHEMISTRY

275766 For the following cell reaction,
$\mathrm{Ag} \vert\mathrm{Ag}+/ \mathrm{AgCl} \vert \mathrm{Cl}^{-} \mid \mathrm{Cl}_{2}, \mathrm{Pt}$
$\Delta G_{\mathrm{f}}^{0}(\mathrm{AgCl})=-109 \mathrm{~kJ} / \mathrm{mol}$
$\begin{aligned}
& \Delta G_{\mathrm{f}}^{0}\left(\mathrm{Cl}^{-}\right)=-129 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{\mathrm{f}}^{0}\left(\mathbf{A g}^{+}\right)=78 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}$
$\mathrm{E}^{\circ}$ of the cell is

1 $-0.60 \mathrm{~V}$
2 $0.60 \mathrm{~V}$
3 $6.0 \mathrm{~V}$
4 none of these
ELECTROCHEMISTRY

275767 Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are

1 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and dissolved oxygen in water is reduced to $\mathrm{OH}^{-}$
2 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{3+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
3 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
4 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}$
ELECTROCHEMISTRY

275768 For cell reaction
$\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
cell representation is :

1 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}\right \vert\left \vert\mathrm{Cu}^{2+}\right \vert \mathrm{Cu}$
2 $\mathrm{Cu}\left \vert\mathrm{Cu}^{2+}\right \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn}$
3 $\mathrm{Cu}\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn} \mid \mathrm{Cu}^{2+}$
4 $\mathrm{Cu}^{2+} \vert\mathrm{Zn} \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Cu}$
ELECTROCHEMISTRY

275769 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(1 \mathrm{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell $\mathrm{E}_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for
the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275770 The standard electrode potential of three metals $X, Y$ and $Z$ are $-1.2 \mathrm{~V},+0.5$ and $-3.0 \mathrm{~V}$ respectively. The reducing power of these metals will be

1 $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
2 Y $>$ Z $>$ X
3 $Y>X>Z$
4 $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$
ELECTROCHEMISTRY

275766 For the following cell reaction,
$\mathrm{Ag} \vert\mathrm{Ag}+/ \mathrm{AgCl} \vert \mathrm{Cl}^{-} \mid \mathrm{Cl}_{2}, \mathrm{Pt}$
$\Delta G_{\mathrm{f}}^{0}(\mathrm{AgCl})=-109 \mathrm{~kJ} / \mathrm{mol}$
$\begin{aligned}
& \Delta G_{\mathrm{f}}^{0}\left(\mathrm{Cl}^{-}\right)=-129 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{\mathrm{f}}^{0}\left(\mathbf{A g}^{+}\right)=78 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}$
$\mathrm{E}^{\circ}$ of the cell is

1 $-0.60 \mathrm{~V}$
2 $0.60 \mathrm{~V}$
3 $6.0 \mathrm{~V}$
4 none of these
ELECTROCHEMISTRY

275767 Corrosion of iron is essentially an electrochemical phenomenon where the cell reactions are

1 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and dissolved oxygen in water is reduced to $\mathrm{OH}^{-}$
2 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{3+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
3 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}^{-}$
4 $\mathrm{Fe}$ is oxidised to $\mathrm{Fe}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$ is reduced to $\mathrm{O}_{2}$
ELECTROCHEMISTRY

275768 For cell reaction
$\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
cell representation is :

1 $\mathrm{Zn}\left \vert\mathrm{Zn}^{2+}\right \vert\left \vert\mathrm{Cu}^{2+}\right \vert \mathrm{Cu}$
2 $\mathrm{Cu}\left \vert\mathrm{Cu}^{2+}\right \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn}$
3 $\mathrm{Cu}\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Zn} \mid \mathrm{Cu}^{2+}$
4 $\mathrm{Cu}^{2+} \vert\mathrm{Zn} \vert\left \vert\mathrm{Zn}^{2+}\right \vert \mathrm{Cu}$
ELECTROCHEMISTRY

275769 For the redox reaction
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.1 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(1 \mathrm{M})+\mathrm{Cu}(\mathrm{s})$
Taking place in a cell $\mathrm{E}_{\text {cell }}^{0}$ is $1.10 \mathrm{~V}$. $\mathrm{E}_{\text {cell }}$ for
the cell will be $\left(2.303 \frac{R T}{F}=0.0591\right)$

1 $2.14 \mathrm{~V}$
2 $1.80 \mathrm{~V}$
3 $1.07 \mathrm{~V}$
4 $0.82 \mathrm{~V}$
ELECTROCHEMISTRY

275770 The standard electrode potential of three metals $X, Y$ and $Z$ are $-1.2 \mathrm{~V},+0.5$ and $-3.0 \mathrm{~V}$ respectively. The reducing power of these metals will be

1 $\mathrm{X}>\mathrm{Y}>\mathrm{Z}$
2 Y $>$ Z $>$ X
3 $Y>X>Z$
4 $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$