229744
Consider the following solutions of equal concentrations
$\begin{array}{ll}
\mathrm{A}=\mathrm{NH}_4 \mathrm{Cl} ; & \mathrm{B}=\mathrm{CH}_3 \mathrm{COONa} \\
\mathrm{C}=\mathrm{NH}_4 \mathrm{OH} ; & \mathrm{D}=\mathrm{CH}_3 \mathrm{COOH}
\end{array}$
A buffer solution can be obtained by mixing equal volumes of
229747 A buffer solution is prepared in which the concentration of $\mathrm{NH}_3$ is $0.30 \mathrm{M}$ and the concentration of $\mathrm{NH}_4^{+}$is 0.20 M. If the equilibrium constant, $\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_3$ equals $1.8 \times 10^{-5}$, What is this $\mathrm{pH}$ of the solution? (log $2.7=0.43$ )
229744
Consider the following solutions of equal concentrations
$\begin{array}{ll}
\mathrm{A}=\mathrm{NH}_4 \mathrm{Cl} ; & \mathrm{B}=\mathrm{CH}_3 \mathrm{COONa} \\
\mathrm{C}=\mathrm{NH}_4 \mathrm{OH} ; & \mathrm{D}=\mathrm{CH}_3 \mathrm{COOH}
\end{array}$
A buffer solution can be obtained by mixing equal volumes of
229747 A buffer solution is prepared in which the concentration of $\mathrm{NH}_3$ is $0.30 \mathrm{M}$ and the concentration of $\mathrm{NH}_4^{+}$is 0.20 M. If the equilibrium constant, $\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_3$ equals $1.8 \times 10^{-5}$, What is this $\mathrm{pH}$ of the solution? (log $2.7=0.43$ )
229744
Consider the following solutions of equal concentrations
$\begin{array}{ll}
\mathrm{A}=\mathrm{NH}_4 \mathrm{Cl} ; & \mathrm{B}=\mathrm{CH}_3 \mathrm{COONa} \\
\mathrm{C}=\mathrm{NH}_4 \mathrm{OH} ; & \mathrm{D}=\mathrm{CH}_3 \mathrm{COOH}
\end{array}$
A buffer solution can be obtained by mixing equal volumes of
229747 A buffer solution is prepared in which the concentration of $\mathrm{NH}_3$ is $0.30 \mathrm{M}$ and the concentration of $\mathrm{NH}_4^{+}$is 0.20 M. If the equilibrium constant, $\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_3$ equals $1.8 \times 10^{-5}$, What is this $\mathrm{pH}$ of the solution? (log $2.7=0.43$ )
229744
Consider the following solutions of equal concentrations
$\begin{array}{ll}
\mathrm{A}=\mathrm{NH}_4 \mathrm{Cl} ; & \mathrm{B}=\mathrm{CH}_3 \mathrm{COONa} \\
\mathrm{C}=\mathrm{NH}_4 \mathrm{OH} ; & \mathrm{D}=\mathrm{CH}_3 \mathrm{COOH}
\end{array}$
A buffer solution can be obtained by mixing equal volumes of
229747 A buffer solution is prepared in which the concentration of $\mathrm{NH}_3$ is $0.30 \mathrm{M}$ and the concentration of $\mathrm{NH}_4^{+}$is 0.20 M. If the equilibrium constant, $\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_3$ equals $1.8 \times 10^{-5}$, What is this $\mathrm{pH}$ of the solution? (log $2.7=0.43$ )
229744
Consider the following solutions of equal concentrations
$\begin{array}{ll}
\mathrm{A}=\mathrm{NH}_4 \mathrm{Cl} ; & \mathrm{B}=\mathrm{CH}_3 \mathrm{COONa} \\
\mathrm{C}=\mathrm{NH}_4 \mathrm{OH} ; & \mathrm{D}=\mathrm{CH}_3 \mathrm{COOH}
\end{array}$
A buffer solution can be obtained by mixing equal volumes of
229747 A buffer solution is prepared in which the concentration of $\mathrm{NH}_3$ is $0.30 \mathrm{M}$ and the concentration of $\mathrm{NH}_4^{+}$is 0.20 M. If the equilibrium constant, $\mathrm{K}_{\mathrm{b}}$ for $\mathrm{NH}_3$ equals $1.8 \times 10^{-5}$, What is this $\mathrm{pH}$ of the solution? (log $2.7=0.43$ )