01. Solubility and Solubility Product Constant
Ionic Equilibrium

229494 The solubility of $\mathrm{AgCl}_{(\mathrm{s})}$ with solubility product $1.6 \times 10^{-10}$ in $0.1 \mathrm{M} \mathrm{NaCl}$ would be

1 $1.26 \times 10^{-5} \mathrm{M}$
2 $1.6 \times 10^{-9} \mathrm{M}$
3 $1.6 \times 10^{-11} \mathrm{M}$
4 zero
Ionic Equilibrium

229495 MY and $\mathrm{NY}_3$ two nearly insoluble salts, have the same $K_{5 p}$ values of $6.2 \times 10^{-13}$ at room temperature. Which statement would be true in regard to $\mathrm{MY}$ and $\mathrm{NY}_3$ ?

1 The salts MY and $\mathrm{NY}_3$ are more soluble in $0.5 \mathrm{M} \mathrm{KY}$ than pure water
2 The addition of the salt of KY to solution of $\mathrm{MY}$ and $\mathrm{NY}_3$ will have no effect on their solubilities
3 The molar solubilities of $\mathrm{MY}$ and $\mathrm{NY}_3$ in water are identical
4 The molar solubility of MY in water is less than that of $\mathrm{NY}_3$
Ionic Equilibrium

229497 Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_2$ in $0.1 \mathrm{M}$ $\mathrm{NaOH}$. Given that the ionic product if $\mathrm{Ni}(\mathrm{OH})_2$ is $2 \times 10^{-15}$

1 $2 \times 10^{-13} \mathrm{M}$
2 $2 \times 10^{-8} \mathrm{M}$
3 $1 \times 10^{-13} \mathrm{M}$
4 $1 \times 10^8 \mathrm{M}$
Ionic Equilibrium

229499 $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Mg}(\mathrm{OH})_2$ is $0.4 \times 10^{-11}$, then the $\mathrm{pH}$ value of the solution is

1 5
2 8.5
3 10.3
4 12
Ionic Equilibrium

229500 $\mathrm{K}_{\mathrm{sp}}$ and solubility of $\mathrm{MX}_4$ (mol/litre) are related by

1 $\mathrm{s}=\left[\mathrm{K}_{\mathrm{5p}} / 256\right]^{1 / 5}$
2 $s=\left[128 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 4}$
3 $\mathrm{s}=\left[256 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 3}$
4 $\mathrm{s}=-\left[\mathrm{K}_{\mathrm{sp}} / 128\right]^{1 / 4}$
Ionic Equilibrium

229494 The solubility of $\mathrm{AgCl}_{(\mathrm{s})}$ with solubility product $1.6 \times 10^{-10}$ in $0.1 \mathrm{M} \mathrm{NaCl}$ would be

1 $1.26 \times 10^{-5} \mathrm{M}$
2 $1.6 \times 10^{-9} \mathrm{M}$
3 $1.6 \times 10^{-11} \mathrm{M}$
4 zero
Ionic Equilibrium

229495 MY and $\mathrm{NY}_3$ two nearly insoluble salts, have the same $K_{5 p}$ values of $6.2 \times 10^{-13}$ at room temperature. Which statement would be true in regard to $\mathrm{MY}$ and $\mathrm{NY}_3$ ?

1 The salts MY and $\mathrm{NY}_3$ are more soluble in $0.5 \mathrm{M} \mathrm{KY}$ than pure water
2 The addition of the salt of KY to solution of $\mathrm{MY}$ and $\mathrm{NY}_3$ will have no effect on their solubilities
3 The molar solubilities of $\mathrm{MY}$ and $\mathrm{NY}_3$ in water are identical
4 The molar solubility of MY in water is less than that of $\mathrm{NY}_3$
Ionic Equilibrium

229497 Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_2$ in $0.1 \mathrm{M}$ $\mathrm{NaOH}$. Given that the ionic product if $\mathrm{Ni}(\mathrm{OH})_2$ is $2 \times 10^{-15}$

1 $2 \times 10^{-13} \mathrm{M}$
2 $2 \times 10^{-8} \mathrm{M}$
3 $1 \times 10^{-13} \mathrm{M}$
4 $1 \times 10^8 \mathrm{M}$
Ionic Equilibrium

229499 $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Mg}(\mathrm{OH})_2$ is $0.4 \times 10^{-11}$, then the $\mathrm{pH}$ value of the solution is

1 5
2 8.5
3 10.3
4 12
Ionic Equilibrium

229500 $\mathrm{K}_{\mathrm{sp}}$ and solubility of $\mathrm{MX}_4$ (mol/litre) are related by

1 $\mathrm{s}=\left[\mathrm{K}_{\mathrm{5p}} / 256\right]^{1 / 5}$
2 $s=\left[128 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 4}$
3 $\mathrm{s}=\left[256 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 3}$
4 $\mathrm{s}=-\left[\mathrm{K}_{\mathrm{sp}} / 128\right]^{1 / 4}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229494 The solubility of $\mathrm{AgCl}_{(\mathrm{s})}$ with solubility product $1.6 \times 10^{-10}$ in $0.1 \mathrm{M} \mathrm{NaCl}$ would be

1 $1.26 \times 10^{-5} \mathrm{M}$
2 $1.6 \times 10^{-9} \mathrm{M}$
3 $1.6 \times 10^{-11} \mathrm{M}$
4 zero
Ionic Equilibrium

229495 MY and $\mathrm{NY}_3$ two nearly insoluble salts, have the same $K_{5 p}$ values of $6.2 \times 10^{-13}$ at room temperature. Which statement would be true in regard to $\mathrm{MY}$ and $\mathrm{NY}_3$ ?

1 The salts MY and $\mathrm{NY}_3$ are more soluble in $0.5 \mathrm{M} \mathrm{KY}$ than pure water
2 The addition of the salt of KY to solution of $\mathrm{MY}$ and $\mathrm{NY}_3$ will have no effect on their solubilities
3 The molar solubilities of $\mathrm{MY}$ and $\mathrm{NY}_3$ in water are identical
4 The molar solubility of MY in water is less than that of $\mathrm{NY}_3$
Ionic Equilibrium

229497 Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_2$ in $0.1 \mathrm{M}$ $\mathrm{NaOH}$. Given that the ionic product if $\mathrm{Ni}(\mathrm{OH})_2$ is $2 \times 10^{-15}$

1 $2 \times 10^{-13} \mathrm{M}$
2 $2 \times 10^{-8} \mathrm{M}$
3 $1 \times 10^{-13} \mathrm{M}$
4 $1 \times 10^8 \mathrm{M}$
Ionic Equilibrium

229499 $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Mg}(\mathrm{OH})_2$ is $0.4 \times 10^{-11}$, then the $\mathrm{pH}$ value of the solution is

1 5
2 8.5
3 10.3
4 12
Ionic Equilibrium

229500 $\mathrm{K}_{\mathrm{sp}}$ and solubility of $\mathrm{MX}_4$ (mol/litre) are related by

1 $\mathrm{s}=\left[\mathrm{K}_{\mathrm{5p}} / 256\right]^{1 / 5}$
2 $s=\left[128 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 4}$
3 $\mathrm{s}=\left[256 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 3}$
4 $\mathrm{s}=-\left[\mathrm{K}_{\mathrm{sp}} / 128\right]^{1 / 4}$
Ionic Equilibrium

229494 The solubility of $\mathrm{AgCl}_{(\mathrm{s})}$ with solubility product $1.6 \times 10^{-10}$ in $0.1 \mathrm{M} \mathrm{NaCl}$ would be

1 $1.26 \times 10^{-5} \mathrm{M}$
2 $1.6 \times 10^{-9} \mathrm{M}$
3 $1.6 \times 10^{-11} \mathrm{M}$
4 zero
Ionic Equilibrium

229495 MY and $\mathrm{NY}_3$ two nearly insoluble salts, have the same $K_{5 p}$ values of $6.2 \times 10^{-13}$ at room temperature. Which statement would be true in regard to $\mathrm{MY}$ and $\mathrm{NY}_3$ ?

1 The salts MY and $\mathrm{NY}_3$ are more soluble in $0.5 \mathrm{M} \mathrm{KY}$ than pure water
2 The addition of the salt of KY to solution of $\mathrm{MY}$ and $\mathrm{NY}_3$ will have no effect on their solubilities
3 The molar solubilities of $\mathrm{MY}$ and $\mathrm{NY}_3$ in water are identical
4 The molar solubility of MY in water is less than that of $\mathrm{NY}_3$
Ionic Equilibrium

229497 Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_2$ in $0.1 \mathrm{M}$ $\mathrm{NaOH}$. Given that the ionic product if $\mathrm{Ni}(\mathrm{OH})_2$ is $2 \times 10^{-15}$

1 $2 \times 10^{-13} \mathrm{M}$
2 $2 \times 10^{-8} \mathrm{M}$
3 $1 \times 10^{-13} \mathrm{M}$
4 $1 \times 10^8 \mathrm{M}$
Ionic Equilibrium

229499 $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Mg}(\mathrm{OH})_2$ is $0.4 \times 10^{-11}$, then the $\mathrm{pH}$ value of the solution is

1 5
2 8.5
3 10.3
4 12
Ionic Equilibrium

229500 $\mathrm{K}_{\mathrm{sp}}$ and solubility of $\mathrm{MX}_4$ (mol/litre) are related by

1 $\mathrm{s}=\left[\mathrm{K}_{\mathrm{5p}} / 256\right]^{1 / 5}$
2 $s=\left[128 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 4}$
3 $\mathrm{s}=\left[256 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 3}$
4 $\mathrm{s}=-\left[\mathrm{K}_{\mathrm{sp}} / 128\right]^{1 / 4}$
Ionic Equilibrium

229494 The solubility of $\mathrm{AgCl}_{(\mathrm{s})}$ with solubility product $1.6 \times 10^{-10}$ in $0.1 \mathrm{M} \mathrm{NaCl}$ would be

1 $1.26 \times 10^{-5} \mathrm{M}$
2 $1.6 \times 10^{-9} \mathrm{M}$
3 $1.6 \times 10^{-11} \mathrm{M}$
4 zero
Ionic Equilibrium

229495 MY and $\mathrm{NY}_3$ two nearly insoluble salts, have the same $K_{5 p}$ values of $6.2 \times 10^{-13}$ at room temperature. Which statement would be true in regard to $\mathrm{MY}$ and $\mathrm{NY}_3$ ?

1 The salts MY and $\mathrm{NY}_3$ are more soluble in $0.5 \mathrm{M} \mathrm{KY}$ than pure water
2 The addition of the salt of KY to solution of $\mathrm{MY}$ and $\mathrm{NY}_3$ will have no effect on their solubilities
3 The molar solubilities of $\mathrm{MY}$ and $\mathrm{NY}_3$ in water are identical
4 The molar solubility of MY in water is less than that of $\mathrm{NY}_3$
Ionic Equilibrium

229497 Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_2$ in $0.1 \mathrm{M}$ $\mathrm{NaOH}$. Given that the ionic product if $\mathrm{Ni}(\mathrm{OH})_2$ is $2 \times 10^{-15}$

1 $2 \times 10^{-13} \mathrm{M}$
2 $2 \times 10^{-8} \mathrm{M}$
3 $1 \times 10^{-13} \mathrm{M}$
4 $1 \times 10^8 \mathrm{M}$
Ionic Equilibrium

229499 $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Mg}(\mathrm{OH})_2$ is $0.4 \times 10^{-11}$, then the $\mathrm{pH}$ value of the solution is

1 5
2 8.5
3 10.3
4 12
Ionic Equilibrium

229500 $\mathrm{K}_{\mathrm{sp}}$ and solubility of $\mathrm{MX}_4$ (mol/litre) are related by

1 $\mathrm{s}=\left[\mathrm{K}_{\mathrm{5p}} / 256\right]^{1 / 5}$
2 $s=\left[128 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 4}$
3 $\mathrm{s}=\left[256 \mathrm{~K}_{\mathrm{sp}}\right]^{1 / 3}$
4 $\mathrm{s}=-\left[\mathrm{K}_{\mathrm{sp}} / 128\right]^{1 / 4}$