01. Solubility and Solubility Product Constant
Ionic Equilibrium

229490 $\mathrm{pH}$ of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_2$ is 9 . The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ca}(\mathrm{OH})_2$ is

1 $0.5 \times 10^{-10}$
2 $0.5 \times 10^{-15}$
3 $0.25 \times 10^{-10}$
4 $0.125 \times 10^{-15}$
Ionic Equilibrium

229491 The molar solubility of $\mathrm{CaF}_2\left(\mathrm{~K}_{\mathrm{sp}}=5.3 \times 10^{-11}\right)$ in $0.1 \mathrm{M}$ solution of $\mathrm{NaF}$ will be

1 $5.3 \times 10^{-11} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $5.3 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $5.3 \times 10^{-9} \mathrm{~mol} \mathrm{L^{-1 }}$
4 $5.3 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
Ionic Equilibrium

229492 The solubility of $\mathrm{BaSO}_4$ in water is $2.42 \times 10^{-3} \mathrm{~g}$ $\mathrm{L}^{-1}$ at $298 \mathrm{~K}$. The value of its solubility product $\left(K_{\mathrm{sp}}\right.$ ) will be
(Given molar mass of $\mathrm{BaSO}_4=233 \mathrm{~g} \mathrm{~mol}^{-1}$ )

1 $1.08 \times 10^{-10} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
2 $1.08 \times 10^{-12} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
3 $1.08 \times 10^{-14} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
4 $1.08 \times 10^{-8} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
Ionic Equilibrium

229493 Concentration of the $\mathrm{Ag}^{+}$ions in a saturated solution of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is $2.2 \times 10^{-4}$ mol $\mathrm{L}^{-1}$. Solubility product of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is

1 $2.66 \times 10^{-12}$
2 $4.5 \times 10^{-11}$
3 $5.3 \times 10^{-12}$
4 $2.42 \times 10^{-8}$
Ionic Equilibrium

229490 $\mathrm{pH}$ of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_2$ is 9 . The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ca}(\mathrm{OH})_2$ is

1 $0.5 \times 10^{-10}$
2 $0.5 \times 10^{-15}$
3 $0.25 \times 10^{-10}$
4 $0.125 \times 10^{-15}$
Ionic Equilibrium

229491 The molar solubility of $\mathrm{CaF}_2\left(\mathrm{~K}_{\mathrm{sp}}=5.3 \times 10^{-11}\right)$ in $0.1 \mathrm{M}$ solution of $\mathrm{NaF}$ will be

1 $5.3 \times 10^{-11} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $5.3 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $5.3 \times 10^{-9} \mathrm{~mol} \mathrm{L^{-1 }}$
4 $5.3 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
Ionic Equilibrium

229492 The solubility of $\mathrm{BaSO}_4$ in water is $2.42 \times 10^{-3} \mathrm{~g}$ $\mathrm{L}^{-1}$ at $298 \mathrm{~K}$. The value of its solubility product $\left(K_{\mathrm{sp}}\right.$ ) will be
(Given molar mass of $\mathrm{BaSO}_4=233 \mathrm{~g} \mathrm{~mol}^{-1}$ )

1 $1.08 \times 10^{-10} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
2 $1.08 \times 10^{-12} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
3 $1.08 \times 10^{-14} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
4 $1.08 \times 10^{-8} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
Ionic Equilibrium

229493 Concentration of the $\mathrm{Ag}^{+}$ions in a saturated solution of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is $2.2 \times 10^{-4}$ mol $\mathrm{L}^{-1}$. Solubility product of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is

1 $2.66 \times 10^{-12}$
2 $4.5 \times 10^{-11}$
3 $5.3 \times 10^{-12}$
4 $2.42 \times 10^{-8}$
Ionic Equilibrium

229490 $\mathrm{pH}$ of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_2$ is 9 . The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ca}(\mathrm{OH})_2$ is

1 $0.5 \times 10^{-10}$
2 $0.5 \times 10^{-15}$
3 $0.25 \times 10^{-10}$
4 $0.125 \times 10^{-15}$
Ionic Equilibrium

229491 The molar solubility of $\mathrm{CaF}_2\left(\mathrm{~K}_{\mathrm{sp}}=5.3 \times 10^{-11}\right)$ in $0.1 \mathrm{M}$ solution of $\mathrm{NaF}$ will be

1 $5.3 \times 10^{-11} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $5.3 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $5.3 \times 10^{-9} \mathrm{~mol} \mathrm{L^{-1 }}$
4 $5.3 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
Ionic Equilibrium

229492 The solubility of $\mathrm{BaSO}_4$ in water is $2.42 \times 10^{-3} \mathrm{~g}$ $\mathrm{L}^{-1}$ at $298 \mathrm{~K}$. The value of its solubility product $\left(K_{\mathrm{sp}}\right.$ ) will be
(Given molar mass of $\mathrm{BaSO}_4=233 \mathrm{~g} \mathrm{~mol}^{-1}$ )

1 $1.08 \times 10^{-10} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
2 $1.08 \times 10^{-12} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
3 $1.08 \times 10^{-14} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
4 $1.08 \times 10^{-8} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
Ionic Equilibrium

229493 Concentration of the $\mathrm{Ag}^{+}$ions in a saturated solution of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is $2.2 \times 10^{-4}$ mol $\mathrm{L}^{-1}$. Solubility product of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is

1 $2.66 \times 10^{-12}$
2 $4.5 \times 10^{-11}$
3 $5.3 \times 10^{-12}$
4 $2.42 \times 10^{-8}$
Ionic Equilibrium

229490 $\mathrm{pH}$ of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_2$ is 9 . The solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ca}(\mathrm{OH})_2$ is

1 $0.5 \times 10^{-10}$
2 $0.5 \times 10^{-15}$
3 $0.25 \times 10^{-10}$
4 $0.125 \times 10^{-15}$
Ionic Equilibrium

229491 The molar solubility of $\mathrm{CaF}_2\left(\mathrm{~K}_{\mathrm{sp}}=5.3 \times 10^{-11}\right)$ in $0.1 \mathrm{M}$ solution of $\mathrm{NaF}$ will be

1 $5.3 \times 10^{-11} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $5.3 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $5.3 \times 10^{-9} \mathrm{~mol} \mathrm{L^{-1 }}$
4 $5.3 \times 10^{-10} \mathrm{~mol} \mathrm{~L}^{-1}$
Ionic Equilibrium

229492 The solubility of $\mathrm{BaSO}_4$ in water is $2.42 \times 10^{-3} \mathrm{~g}$ $\mathrm{L}^{-1}$ at $298 \mathrm{~K}$. The value of its solubility product $\left(K_{\mathrm{sp}}\right.$ ) will be
(Given molar mass of $\mathrm{BaSO}_4=233 \mathrm{~g} \mathrm{~mol}^{-1}$ )

1 $1.08 \times 10^{-10} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
2 $1.08 \times 10^{-12} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
3 $1.08 \times 10^{-14} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
4 $1.08 \times 10^{-8} \mathrm{~mol}^2 \mathrm{~L}^{-2}$
Ionic Equilibrium

229493 Concentration of the $\mathrm{Ag}^{+}$ions in a saturated solution of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is $2.2 \times 10^{-4}$ mol $\mathrm{L}^{-1}$. Solubility product of $\mathrm{Ag}_2 \mathrm{C}_2 \mathrm{O}_4$ is

1 $2.66 \times 10^{-12}$
2 $4.5 \times 10^{-11}$
3 $5.3 \times 10^{-12}$
4 $2.42 \times 10^{-8}$