01. Solubility and Solubility Product Constant
Ionic Equilibrium

229485 Solubility of $\mathbf{M X}_2$ type electrolytes is $0.5 \times 10^{-4}$ $\mathbf{m o l} /$ lit, then find out $\mathbf{K}_{\text {sp }}$ of electrolytes.

1 $5 \times 10^{-12}$
2 $25 \times 10^{-10}$
3 $1 \times 10^{-13}$
4 $5 \times 10^{-13}$
Ionic Equilibrium

229486 Solubility of $M_2 \mathrm{~S}$ salt is $3.5 \times 10^{-6}$ then find out solubility product,

1 $1.7 \times 10^{-6}$
2 $1.7 \times 10^{-16}$
3 $1.7 \times 10^{-18}$
4 $1.7 \times 10^{-12}$
Ionic Equilibrium

229488 The solubility product of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}^{\mathrm{S}}$ are $10^{-31}, 10^{-f 4}$ and $10^{-54}$ respectively. The solubilities of these sulphides are in the order

1 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
2 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
3 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
4 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}>\mathrm{CuS}$
Ionic Equilibrium

229489 $\mathrm{pH}$ of a saturated solution if $\mathrm{Ba}(\mathrm{OH})_2$ is 12. The value of solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ba}(\mathrm{OH})_2$ is

1 $3.3 \times 10^{-7}$
2 $5.0 \times 10^{-7}$
3 $4.0 \times 10^{-6}$
4 $5.0 \times 10^{-6}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229485 Solubility of $\mathbf{M X}_2$ type electrolytes is $0.5 \times 10^{-4}$ $\mathbf{m o l} /$ lit, then find out $\mathbf{K}_{\text {sp }}$ of electrolytes.

1 $5 \times 10^{-12}$
2 $25 \times 10^{-10}$
3 $1 \times 10^{-13}$
4 $5 \times 10^{-13}$
Ionic Equilibrium

229486 Solubility of $M_2 \mathrm{~S}$ salt is $3.5 \times 10^{-6}$ then find out solubility product,

1 $1.7 \times 10^{-6}$
2 $1.7 \times 10^{-16}$
3 $1.7 \times 10^{-18}$
4 $1.7 \times 10^{-12}$
Ionic Equilibrium

229488 The solubility product of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}^{\mathrm{S}}$ are $10^{-31}, 10^{-f 4}$ and $10^{-54}$ respectively. The solubilities of these sulphides are in the order

1 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
2 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
3 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
4 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}>\mathrm{CuS}$
Ionic Equilibrium

229489 $\mathrm{pH}$ of a saturated solution if $\mathrm{Ba}(\mathrm{OH})_2$ is 12. The value of solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ba}(\mathrm{OH})_2$ is

1 $3.3 \times 10^{-7}$
2 $5.0 \times 10^{-7}$
3 $4.0 \times 10^{-6}$
4 $5.0 \times 10^{-6}$
Ionic Equilibrium

229485 Solubility of $\mathbf{M X}_2$ type electrolytes is $0.5 \times 10^{-4}$ $\mathbf{m o l} /$ lit, then find out $\mathbf{K}_{\text {sp }}$ of electrolytes.

1 $5 \times 10^{-12}$
2 $25 \times 10^{-10}$
3 $1 \times 10^{-13}$
4 $5 \times 10^{-13}$
Ionic Equilibrium

229486 Solubility of $M_2 \mathrm{~S}$ salt is $3.5 \times 10^{-6}$ then find out solubility product,

1 $1.7 \times 10^{-6}$
2 $1.7 \times 10^{-16}$
3 $1.7 \times 10^{-18}$
4 $1.7 \times 10^{-12}$
Ionic Equilibrium

229488 The solubility product of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}^{\mathrm{S}}$ are $10^{-31}, 10^{-f 4}$ and $10^{-54}$ respectively. The solubilities of these sulphides are in the order

1 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
2 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
3 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
4 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}>\mathrm{CuS}$
Ionic Equilibrium

229489 $\mathrm{pH}$ of a saturated solution if $\mathrm{Ba}(\mathrm{OH})_2$ is 12. The value of solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ba}(\mathrm{OH})_2$ is

1 $3.3 \times 10^{-7}$
2 $5.0 \times 10^{-7}$
3 $4.0 \times 10^{-6}$
4 $5.0 \times 10^{-6}$
Ionic Equilibrium

229485 Solubility of $\mathbf{M X}_2$ type electrolytes is $0.5 \times 10^{-4}$ $\mathbf{m o l} /$ lit, then find out $\mathbf{K}_{\text {sp }}$ of electrolytes.

1 $5 \times 10^{-12}$
2 $25 \times 10^{-10}$
3 $1 \times 10^{-13}$
4 $5 \times 10^{-13}$
Ionic Equilibrium

229486 Solubility of $M_2 \mathrm{~S}$ salt is $3.5 \times 10^{-6}$ then find out solubility product,

1 $1.7 \times 10^{-6}$
2 $1.7 \times 10^{-16}$
3 $1.7 \times 10^{-18}$
4 $1.7 \times 10^{-12}$
Ionic Equilibrium

229488 The solubility product of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}^{\mathrm{S}}$ are $10^{-31}, 10^{-f 4}$ and $10^{-54}$ respectively. The solubilities of these sulphides are in the order

1 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
2 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
3 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
4 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}>\mathrm{CuS}$
Ionic Equilibrium

229489 $\mathrm{pH}$ of a saturated solution if $\mathrm{Ba}(\mathrm{OH})_2$ is 12. The value of solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ of $\mathrm{Ba}(\mathrm{OH})_2$ is

1 $3.3 \times 10^{-7}$
2 $5.0 \times 10^{-7}$
3 $4.0 \times 10^{-6}$
4 $5.0 \times 10^{-6}$