229474 Consider the electrochemical reaction between $\mathrm{Ag}$ (s) and $\mathrm{Cl}_2(\mathrm{~g})$ electrodes in $1 \mathrm{~L}$ of $0.1 \mathrm{M}$ $\mathrm{KCl}$ aqueous solution. Solubility product of $\mathrm{AgCl}$ is $1.8 \times 10^{-10}$ and $\mathrm{F}=96500 \mathrm{C} / \mathrm{mol}$ At $1 \geq$ $10^{-6} \mathrm{~A}$ current, calculate the time required to start observing the $\mathrm{AgCl}$ precipitation in the galvanic cell
229481
In qualitative analysis the metals of group 1 can be separated from other ions by precipitating them as chloride salts. A solutions initially contains $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ at a concentration of $0.10 \mathrm{M}$. Aqueous $\mathrm{HCl}$ is added to this solution until the $\mathrm{Cl}^{-}$concentrations of $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ be at equilibrium ?
$\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{AgCl}=1.8 \times 10^{-10}, \mathrm{~K}_{\mathrm{sp}}$ for $\mathrm{PbCl}_2$ $=1.7 \times 10^{-5}$ )
229484 The solubility product of \(\mathrm{AgI}\) at \(25^{\circ} \mathrm{C}\) is \(1.0 \times 10^{-16} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\). The solubility of \(\mathrm{AgI}\) in \(10^{-4}\) \(\mathrm{N}\) solution of \(\mathrm{KI}\) at \(25^{\circ} \mathrm{C}\) is approximately (in mol L \({ }^{-1}\) )
229474 Consider the electrochemical reaction between $\mathrm{Ag}$ (s) and $\mathrm{Cl}_2(\mathrm{~g})$ electrodes in $1 \mathrm{~L}$ of $0.1 \mathrm{M}$ $\mathrm{KCl}$ aqueous solution. Solubility product of $\mathrm{AgCl}$ is $1.8 \times 10^{-10}$ and $\mathrm{F}=96500 \mathrm{C} / \mathrm{mol}$ At $1 \geq$ $10^{-6} \mathrm{~A}$ current, calculate the time required to start observing the $\mathrm{AgCl}$ precipitation in the galvanic cell
229481
In qualitative analysis the metals of group 1 can be separated from other ions by precipitating them as chloride salts. A solutions initially contains $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ at a concentration of $0.10 \mathrm{M}$. Aqueous $\mathrm{HCl}$ is added to this solution until the $\mathrm{Cl}^{-}$concentrations of $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ be at equilibrium ?
$\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{AgCl}=1.8 \times 10^{-10}, \mathrm{~K}_{\mathrm{sp}}$ for $\mathrm{PbCl}_2$ $=1.7 \times 10^{-5}$ )
229484 The solubility product of \(\mathrm{AgI}\) at \(25^{\circ} \mathrm{C}\) is \(1.0 \times 10^{-16} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\). The solubility of \(\mathrm{AgI}\) in \(10^{-4}\) \(\mathrm{N}\) solution of \(\mathrm{KI}\) at \(25^{\circ} \mathrm{C}\) is approximately (in mol L \({ }^{-1}\) )
229474 Consider the electrochemical reaction between $\mathrm{Ag}$ (s) and $\mathrm{Cl}_2(\mathrm{~g})$ electrodes in $1 \mathrm{~L}$ of $0.1 \mathrm{M}$ $\mathrm{KCl}$ aqueous solution. Solubility product of $\mathrm{AgCl}$ is $1.8 \times 10^{-10}$ and $\mathrm{F}=96500 \mathrm{C} / \mathrm{mol}$ At $1 \geq$ $10^{-6} \mathrm{~A}$ current, calculate the time required to start observing the $\mathrm{AgCl}$ precipitation in the galvanic cell
229481
In qualitative analysis the metals of group 1 can be separated from other ions by precipitating them as chloride salts. A solutions initially contains $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ at a concentration of $0.10 \mathrm{M}$. Aqueous $\mathrm{HCl}$ is added to this solution until the $\mathrm{Cl}^{-}$concentrations of $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ be at equilibrium ?
$\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{AgCl}=1.8 \times 10^{-10}, \mathrm{~K}_{\mathrm{sp}}$ for $\mathrm{PbCl}_2$ $=1.7 \times 10^{-5}$ )
229484 The solubility product of \(\mathrm{AgI}\) at \(25^{\circ} \mathrm{C}\) is \(1.0 \times 10^{-16} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\). The solubility of \(\mathrm{AgI}\) in \(10^{-4}\) \(\mathrm{N}\) solution of \(\mathrm{KI}\) at \(25^{\circ} \mathrm{C}\) is approximately (in mol L \({ }^{-1}\) )
229474 Consider the electrochemical reaction between $\mathrm{Ag}$ (s) and $\mathrm{Cl}_2(\mathrm{~g})$ electrodes in $1 \mathrm{~L}$ of $0.1 \mathrm{M}$ $\mathrm{KCl}$ aqueous solution. Solubility product of $\mathrm{AgCl}$ is $1.8 \times 10^{-10}$ and $\mathrm{F}=96500 \mathrm{C} / \mathrm{mol}$ At $1 \geq$ $10^{-6} \mathrm{~A}$ current, calculate the time required to start observing the $\mathrm{AgCl}$ precipitation in the galvanic cell
229481
In qualitative analysis the metals of group 1 can be separated from other ions by precipitating them as chloride salts. A solutions initially contains $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ at a concentration of $0.10 \mathrm{M}$. Aqueous $\mathrm{HCl}$ is added to this solution until the $\mathrm{Cl}^{-}$concentrations of $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ be at equilibrium ?
$\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{AgCl}=1.8 \times 10^{-10}, \mathrm{~K}_{\mathrm{sp}}$ for $\mathrm{PbCl}_2$ $=1.7 \times 10^{-5}$ )
229484 The solubility product of \(\mathrm{AgI}\) at \(25^{\circ} \mathrm{C}\) is \(1.0 \times 10^{-16} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\). The solubility of \(\mathrm{AgI}\) in \(10^{-4}\) \(\mathrm{N}\) solution of \(\mathrm{KI}\) at \(25^{\circ} \mathrm{C}\) is approximately (in mol L \({ }^{-1}\) )
229474 Consider the electrochemical reaction between $\mathrm{Ag}$ (s) and $\mathrm{Cl}_2(\mathrm{~g})$ electrodes in $1 \mathrm{~L}$ of $0.1 \mathrm{M}$ $\mathrm{KCl}$ aqueous solution. Solubility product of $\mathrm{AgCl}$ is $1.8 \times 10^{-10}$ and $\mathrm{F}=96500 \mathrm{C} / \mathrm{mol}$ At $1 \geq$ $10^{-6} \mathrm{~A}$ current, calculate the time required to start observing the $\mathrm{AgCl}$ precipitation in the galvanic cell
229481
In qualitative analysis the metals of group 1 can be separated from other ions by precipitating them as chloride salts. A solutions initially contains $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ at a concentration of $0.10 \mathrm{M}$. Aqueous $\mathrm{HCl}$ is added to this solution until the $\mathrm{Cl}^{-}$concentrations of $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ be at equilibrium ?
$\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{AgCl}=1.8 \times 10^{-10}, \mathrm{~K}_{\mathrm{sp}}$ for $\mathrm{PbCl}_2$ $=1.7 \times 10^{-5}$ )
229484 The solubility product of \(\mathrm{AgI}\) at \(25^{\circ} \mathrm{C}\) is \(1.0 \times 10^{-16} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\). The solubility of \(\mathrm{AgI}\) in \(10^{-4}\) \(\mathrm{N}\) solution of \(\mathrm{KI}\) at \(25^{\circ} \mathrm{C}\) is approximately (in mol L \({ }^{-1}\) )