01. Solubility and Solubility Product Constant
Ionic Equilibrium

229425 If solubility product of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ is denoted by $K_{s p}$ and its molar solubility is denoted by $\dot{S}$, then which of the following relation between $S$ and $K_{\mathrm{sp}}$ is correct?

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{144}\right)^{1 / 6}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{6912}\right)^{1 / 7}$
3 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{929}\right)^{1 / 9}$
4 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{216}\right)^{1 / 7}$
Ionic Equilibrium

229448 Which of the following salts is most soluble?

1 $\mathrm{Bi}_2 \mathrm{~S}_3\left(\mathrm{k}_{5 \mathrm{p}}=1 \times 10^{-17}\right)$
2 $\mathrm{MnS}\left(\mathrm{K}_{\mathrm{sp}}=7 \times 10^{-16}\right)$
3 $\mathrm{CuS}\left(\mathrm{k}_{\mathrm{sp}}=8 \times 10^{-37}\right)$
4 $\mathrm{Ag}_2 \mathrm{~S}\left(\mathrm{~K}_{\mathrm{sp}}=6 \times 10^{-51}\right)$
Ionic Equilibrium

229429 An aqueous solution contains an unknown concentration of $\mathrm{Ba}^{2+}$ When $50 \mathrm{~mL}$ of a $1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{SO}_4$ is added, $\mathrm{BaSO}_4$ just begins to precipitate. The final volume is $500 \mathrm{~mL}$. The solubility product of $\mathrm{BaSO}_4$ is $1 \times 10^{-10}$. What is the original concentration of $\mathrm{Ba}^{2+}$ ?

1 $5 \times 10^{-9} \mathrm{M}$
2 $2 \times 10^{-9} \mathrm{M}$
3 $1.1 \times 10^{-9} \mathrm{M}$
4 $1.0 \times 10^{-10} \mathrm{M}$
Ionic Equilibrium

229457 The solubility product of $\mathrm{Hg}_2 \mathrm{I}_2$ is equal to

1 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]$
2 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]$
3 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]^2$
4 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^2$
Ionic Equilibrium

229425 If solubility product of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ is denoted by $K_{s p}$ and its molar solubility is denoted by $\dot{S}$, then which of the following relation between $S$ and $K_{\mathrm{sp}}$ is correct?

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{144}\right)^{1 / 6}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{6912}\right)^{1 / 7}$
3 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{929}\right)^{1 / 9}$
4 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{216}\right)^{1 / 7}$
Ionic Equilibrium

229448 Which of the following salts is most soluble?

1 $\mathrm{Bi}_2 \mathrm{~S}_3\left(\mathrm{k}_{5 \mathrm{p}}=1 \times 10^{-17}\right)$
2 $\mathrm{MnS}\left(\mathrm{K}_{\mathrm{sp}}=7 \times 10^{-16}\right)$
3 $\mathrm{CuS}\left(\mathrm{k}_{\mathrm{sp}}=8 \times 10^{-37}\right)$
4 $\mathrm{Ag}_2 \mathrm{~S}\left(\mathrm{~K}_{\mathrm{sp}}=6 \times 10^{-51}\right)$
Ionic Equilibrium

229429 An aqueous solution contains an unknown concentration of $\mathrm{Ba}^{2+}$ When $50 \mathrm{~mL}$ of a $1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{SO}_4$ is added, $\mathrm{BaSO}_4$ just begins to precipitate. The final volume is $500 \mathrm{~mL}$. The solubility product of $\mathrm{BaSO}_4$ is $1 \times 10^{-10}$. What is the original concentration of $\mathrm{Ba}^{2+}$ ?

1 $5 \times 10^{-9} \mathrm{M}$
2 $2 \times 10^{-9} \mathrm{M}$
3 $1.1 \times 10^{-9} \mathrm{M}$
4 $1.0 \times 10^{-10} \mathrm{M}$
Ionic Equilibrium

229457 The solubility product of $\mathrm{Hg}_2 \mathrm{I}_2$ is equal to

1 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]$
2 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]$
3 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]^2$
4 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^2$
Ionic Equilibrium

229425 If solubility product of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ is denoted by $K_{s p}$ and its molar solubility is denoted by $\dot{S}$, then which of the following relation between $S$ and $K_{\mathrm{sp}}$ is correct?

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{144}\right)^{1 / 6}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{6912}\right)^{1 / 7}$
3 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{929}\right)^{1 / 9}$
4 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{216}\right)^{1 / 7}$
Ionic Equilibrium

229448 Which of the following salts is most soluble?

1 $\mathrm{Bi}_2 \mathrm{~S}_3\left(\mathrm{k}_{5 \mathrm{p}}=1 \times 10^{-17}\right)$
2 $\mathrm{MnS}\left(\mathrm{K}_{\mathrm{sp}}=7 \times 10^{-16}\right)$
3 $\mathrm{CuS}\left(\mathrm{k}_{\mathrm{sp}}=8 \times 10^{-37}\right)$
4 $\mathrm{Ag}_2 \mathrm{~S}\left(\mathrm{~K}_{\mathrm{sp}}=6 \times 10^{-51}\right)$
Ionic Equilibrium

229429 An aqueous solution contains an unknown concentration of $\mathrm{Ba}^{2+}$ When $50 \mathrm{~mL}$ of a $1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{SO}_4$ is added, $\mathrm{BaSO}_4$ just begins to precipitate. The final volume is $500 \mathrm{~mL}$. The solubility product of $\mathrm{BaSO}_4$ is $1 \times 10^{-10}$. What is the original concentration of $\mathrm{Ba}^{2+}$ ?

1 $5 \times 10^{-9} \mathrm{M}$
2 $2 \times 10^{-9} \mathrm{M}$
3 $1.1 \times 10^{-9} \mathrm{M}$
4 $1.0 \times 10^{-10} \mathrm{M}$
Ionic Equilibrium

229457 The solubility product of $\mathrm{Hg}_2 \mathrm{I}_2$ is equal to

1 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]$
2 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]$
3 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]^2$
4 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^2$
Ionic Equilibrium

229425 If solubility product of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ is denoted by $K_{s p}$ and its molar solubility is denoted by $\dot{S}$, then which of the following relation between $S$ and $K_{\mathrm{sp}}$ is correct?

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{144}\right)^{1 / 6}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{6912}\right)^{1 / 7}$
3 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{929}\right)^{1 / 9}$
4 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{216}\right)^{1 / 7}$
Ionic Equilibrium

229448 Which of the following salts is most soluble?

1 $\mathrm{Bi}_2 \mathrm{~S}_3\left(\mathrm{k}_{5 \mathrm{p}}=1 \times 10^{-17}\right)$
2 $\mathrm{MnS}\left(\mathrm{K}_{\mathrm{sp}}=7 \times 10^{-16}\right)$
3 $\mathrm{CuS}\left(\mathrm{k}_{\mathrm{sp}}=8 \times 10^{-37}\right)$
4 $\mathrm{Ag}_2 \mathrm{~S}\left(\mathrm{~K}_{\mathrm{sp}}=6 \times 10^{-51}\right)$
Ionic Equilibrium

229429 An aqueous solution contains an unknown concentration of $\mathrm{Ba}^{2+}$ When $50 \mathrm{~mL}$ of a $1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{SO}_4$ is added, $\mathrm{BaSO}_4$ just begins to precipitate. The final volume is $500 \mathrm{~mL}$. The solubility product of $\mathrm{BaSO}_4$ is $1 \times 10^{-10}$. What is the original concentration of $\mathrm{Ba}^{2+}$ ?

1 $5 \times 10^{-9} \mathrm{M}$
2 $2 \times 10^{-9} \mathrm{M}$
3 $1.1 \times 10^{-9} \mathrm{M}$
4 $1.0 \times 10^{-10} \mathrm{M}$
Ionic Equilibrium

229457 The solubility product of $\mathrm{Hg}_2 \mathrm{I}_2$ is equal to

1 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]$
2 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]$
3 $\left[\mathrm{Hg}_2^{2+}\right]\left[\mathrm{I}^{-}\right]^2$
4 $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^2$