01. Solubility and Solubility Product Constant
Ionic Equilibrium

229413 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}$ are $1^{-31}, 1^{-44}$ and $10^{-54}$ respectively. The solubility of these sulphides are in the order :

1 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
2 $\mathrm{AgS}>\mathrm{HgS}>\mathrm{CuS}$
3 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
4 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
Ionic Equilibrium

229415 If $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{Ag}_2 \mathrm{~S}$ is $10^{-17}$, the solubility of $\mathrm{Ag}_2 \mathrm{~S}$ in $0.1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{~S}$ will be

1 $10^{-8}$
2 $5 \times 10^{-9}$
3 $10^{-15}$
4 $10^{-16}$
Ionic Equilibrium

229416 If solubility of $\mathrm{M}(\mathrm{OH})_3$ is $\mathrm{S}$, its solubility product will be:

1 $108 \mathrm{~S}^5$
2 $27 \mathrm{~S}^3$
3 $4 \mathrm{~S}^4$
4 $27 \mathrm{~S}^4$
Ionic Equilibrium

229417 The product of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$of water will be

1 $\mathrm{K}_{\mathrm{w}}=10^{-12}$
2 $\mathrm{K}_{\mathrm{w}}=10^{-14}$
3 $\mathrm{K}_{\mathrm{w}}=10^{-11}$
4 $\mathrm{K}_{\mathrm{w}}=10^{-10}$
Ionic Equilibrium

229413 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}$ are $1^{-31}, 1^{-44}$ and $10^{-54}$ respectively. The solubility of these sulphides are in the order :

1 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
2 $\mathrm{AgS}>\mathrm{HgS}>\mathrm{CuS}$
3 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
4 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
Ionic Equilibrium

229415 If $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{Ag}_2 \mathrm{~S}$ is $10^{-17}$, the solubility of $\mathrm{Ag}_2 \mathrm{~S}$ in $0.1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{~S}$ will be

1 $10^{-8}$
2 $5 \times 10^{-9}$
3 $10^{-15}$
4 $10^{-16}$
Ionic Equilibrium

229416 If solubility of $\mathrm{M}(\mathrm{OH})_3$ is $\mathrm{S}$, its solubility product will be:

1 $108 \mathrm{~S}^5$
2 $27 \mathrm{~S}^3$
3 $4 \mathrm{~S}^4$
4 $27 \mathrm{~S}^4$
Ionic Equilibrium

229417 The product of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$of water will be

1 $\mathrm{K}_{\mathrm{w}}=10^{-12}$
2 $\mathrm{K}_{\mathrm{w}}=10^{-14}$
3 $\mathrm{K}_{\mathrm{w}}=10^{-11}$
4 $\mathrm{K}_{\mathrm{w}}=10^{-10}$
Ionic Equilibrium

229413 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}$ are $1^{-31}, 1^{-44}$ and $10^{-54}$ respectively. The solubility of these sulphides are in the order :

1 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
2 $\mathrm{AgS}>\mathrm{HgS}>\mathrm{CuS}$
3 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
4 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
Ionic Equilibrium

229415 If $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{Ag}_2 \mathrm{~S}$ is $10^{-17}$, the solubility of $\mathrm{Ag}_2 \mathrm{~S}$ in $0.1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{~S}$ will be

1 $10^{-8}$
2 $5 \times 10^{-9}$
3 $10^{-15}$
4 $10^{-16}$
Ionic Equilibrium

229416 If solubility of $\mathrm{M}(\mathrm{OH})_3$ is $\mathrm{S}$, its solubility product will be:

1 $108 \mathrm{~S}^5$
2 $27 \mathrm{~S}^3$
3 $4 \mathrm{~S}^4$
4 $27 \mathrm{~S}^4$
Ionic Equilibrium

229417 The product of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$of water will be

1 $\mathrm{K}_{\mathrm{w}}=10^{-12}$
2 $\mathrm{K}_{\mathrm{w}}=10^{-14}$
3 $\mathrm{K}_{\mathrm{w}}=10^{-11}$
4 $\mathrm{K}_{\mathrm{w}}=10^{-10}$
Ionic Equilibrium

229413 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{CuS}, \mathrm{Ag}_2 \mathrm{~S}$ and $\mathrm{HgS}$ are $1^{-31}, 1^{-44}$ and $10^{-54}$ respectively. The solubility of these sulphides are in the order :

1 $\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}$
2 $\mathrm{AgS}>\mathrm{HgS}>\mathrm{CuS}$
3 $\mathrm{HgS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}$
4 $\mathrm{CuS}>\mathrm{Ag}_2 \mathrm{~S}>\mathrm{HgS}$
Ionic Equilibrium

229415 If $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{Ag}_2 \mathrm{~S}$ is $10^{-17}$, the solubility of $\mathrm{Ag}_2 \mathrm{~S}$ in $0.1 \mathrm{M}$ solution of $\mathrm{Na}_2 \mathrm{~S}$ will be

1 $10^{-8}$
2 $5 \times 10^{-9}$
3 $10^{-15}$
4 $10^{-16}$
Ionic Equilibrium

229416 If solubility of $\mathrm{M}(\mathrm{OH})_3$ is $\mathrm{S}$, its solubility product will be:

1 $108 \mathrm{~S}^5$
2 $27 \mathrm{~S}^3$
3 $4 \mathrm{~S}^4$
4 $27 \mathrm{~S}^4$
Ionic Equilibrium

229417 The product of $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$of water will be

1 $\mathrm{K}_{\mathrm{w}}=10^{-12}$
2 $\mathrm{K}_{\mathrm{w}}=10^{-14}$
3 $\mathrm{K}_{\mathrm{w}}=10^{-11}$
4 $\mathrm{K}_{\mathrm{w}}=10^{-10}$