01. Solubility and Solubility Product Constant
Ionic Equilibrium

229418 Solubility product of pure $\mathrm{PbCl}_2$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^3$
3 $\mathrm{K}_{\mathrm{sp}}=108 \mathrm{~S}^5$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}$
Ionic Equilibrium

229420 A metal halide has molar concentration of $0.000011 \mathrm{~mol} / \mathrm{L}$ in saturated state. If its $K_{\mathrm{sp}}=$ $39.5 \times 10^{-20}$, then the halide is

1 $\mathrm{M}_2 \mathrm{X}_4$
2 $\mathrm{MX}_4$
3 $\mathrm{M}_2 \mathrm{X}_6$
4 $\mathrm{MX}_3$
Ionic Equilibrium

229422 Solubility produces of $\mathrm{A1}(\mathrm{OH})_3$ and $\mathrm{Zn}(\mathrm{OH})_2$ are $8.5 \times 10^{-23}$ and $1.8 \times 10^{-4}$ respectively. If both $\mathrm{Al}^{3+}$ and $\mathrm{Zn}^{2+}$ ions are present in a solution, which one will be precipitated first on addition of $\mathrm{NH}_4 \mathrm{OH}$ ?

1 $\mathrm{A} 1(\mathrm{OH})_3$
2 $\mathrm{Zn}(\mathrm{OH})_2$
3 Both (a) and (b)
4 None of these
Ionic Equilibrium

229423 The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is $1.84 \times 10^{-5} \mathrm{M}$ in water. The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is a buffer solution of $\mathbf{p H}=12$ is

1 $1.84 \times 10^{-9} \mathrm{M}$
2 $\frac{2.49}{1.84} \times 10^{-9} \mathrm{M}$
3 $6.23 \times 10^{-11} \mathrm{M}$
4 $2.49 \times 10^{-10} \mathrm{M}$
JEE MAIN-2019
Ionic Equilibrium

229418 Solubility product of pure $\mathrm{PbCl}_2$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^3$
3 $\mathrm{K}_{\mathrm{sp}}=108 \mathrm{~S}^5$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}$
Ionic Equilibrium

229420 A metal halide has molar concentration of $0.000011 \mathrm{~mol} / \mathrm{L}$ in saturated state. If its $K_{\mathrm{sp}}=$ $39.5 \times 10^{-20}$, then the halide is

1 $\mathrm{M}_2 \mathrm{X}_4$
2 $\mathrm{MX}_4$
3 $\mathrm{M}_2 \mathrm{X}_6$
4 $\mathrm{MX}_3$
Ionic Equilibrium

229422 Solubility produces of $\mathrm{A1}(\mathrm{OH})_3$ and $\mathrm{Zn}(\mathrm{OH})_2$ are $8.5 \times 10^{-23}$ and $1.8 \times 10^{-4}$ respectively. If both $\mathrm{Al}^{3+}$ and $\mathrm{Zn}^{2+}$ ions are present in a solution, which one will be precipitated first on addition of $\mathrm{NH}_4 \mathrm{OH}$ ?

1 $\mathrm{A} 1(\mathrm{OH})_3$
2 $\mathrm{Zn}(\mathrm{OH})_2$
3 Both (a) and (b)
4 None of these
Ionic Equilibrium

229423 The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is $1.84 \times 10^{-5} \mathrm{M}$ in water. The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is a buffer solution of $\mathbf{p H}=12$ is

1 $1.84 \times 10^{-9} \mathrm{M}$
2 $\frac{2.49}{1.84} \times 10^{-9} \mathrm{M}$
3 $6.23 \times 10^{-11} \mathrm{M}$
4 $2.49 \times 10^{-10} \mathrm{M}$
JEE MAIN-2019
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229418 Solubility product of pure $\mathrm{PbCl}_2$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^3$
3 $\mathrm{K}_{\mathrm{sp}}=108 \mathrm{~S}^5$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}$
Ionic Equilibrium

229420 A metal halide has molar concentration of $0.000011 \mathrm{~mol} / \mathrm{L}$ in saturated state. If its $K_{\mathrm{sp}}=$ $39.5 \times 10^{-20}$, then the halide is

1 $\mathrm{M}_2 \mathrm{X}_4$
2 $\mathrm{MX}_4$
3 $\mathrm{M}_2 \mathrm{X}_6$
4 $\mathrm{MX}_3$
Ionic Equilibrium

229422 Solubility produces of $\mathrm{A1}(\mathrm{OH})_3$ and $\mathrm{Zn}(\mathrm{OH})_2$ are $8.5 \times 10^{-23}$ and $1.8 \times 10^{-4}$ respectively. If both $\mathrm{Al}^{3+}$ and $\mathrm{Zn}^{2+}$ ions are present in a solution, which one will be precipitated first on addition of $\mathrm{NH}_4 \mathrm{OH}$ ?

1 $\mathrm{A} 1(\mathrm{OH})_3$
2 $\mathrm{Zn}(\mathrm{OH})_2$
3 Both (a) and (b)
4 None of these
Ionic Equilibrium

229423 The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is $1.84 \times 10^{-5} \mathrm{M}$ in water. The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is a buffer solution of $\mathbf{p H}=12$ is

1 $1.84 \times 10^{-9} \mathrm{M}$
2 $\frac{2.49}{1.84} \times 10^{-9} \mathrm{M}$
3 $6.23 \times 10^{-11} \mathrm{M}$
4 $2.49 \times 10^{-10} \mathrm{M}$
JEE MAIN-2019
Ionic Equilibrium

229418 Solubility product of pure $\mathrm{PbCl}_2$ will be

1 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^2$
2 $\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}^3$
3 $\mathrm{K}_{\mathrm{sp}}=108 \mathrm{~S}^5$
4 $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}$
Ionic Equilibrium

229420 A metal halide has molar concentration of $0.000011 \mathrm{~mol} / \mathrm{L}$ in saturated state. If its $K_{\mathrm{sp}}=$ $39.5 \times 10^{-20}$, then the halide is

1 $\mathrm{M}_2 \mathrm{X}_4$
2 $\mathrm{MX}_4$
3 $\mathrm{M}_2 \mathrm{X}_6$
4 $\mathrm{MX}_3$
Ionic Equilibrium

229422 Solubility produces of $\mathrm{A1}(\mathrm{OH})_3$ and $\mathrm{Zn}(\mathrm{OH})_2$ are $8.5 \times 10^{-23}$ and $1.8 \times 10^{-4}$ respectively. If both $\mathrm{Al}^{3+}$ and $\mathrm{Zn}^{2+}$ ions are present in a solution, which one will be precipitated first on addition of $\mathrm{NH}_4 \mathrm{OH}$ ?

1 $\mathrm{A} 1(\mathrm{OH})_3$
2 $\mathrm{Zn}(\mathrm{OH})_2$
3 Both (a) and (b)
4 None of these
Ionic Equilibrium

229423 The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is $1.84 \times 10^{-5} \mathrm{M}$ in water. The molar solubility of $\mathrm{Cd}(\mathrm{OH})_2$ is a buffer solution of $\mathbf{p H}=12$ is

1 $1.84 \times 10^{-9} \mathrm{M}$
2 $\frac{2.49}{1.84} \times 10^{-9} \mathrm{M}$
3 $6.23 \times 10^{-11} \mathrm{M}$
4 $2.49 \times 10^{-10} \mathrm{M}$
JEE MAIN-2019