06. Application of Kp and Kc
Chemical Equilibrium

229326 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$,
$\left(K_{c}=1.8 \times 10^{-6}\right.$ at $\left.184^{\circ} \mathrm{C}\right)(\mathrm{R}=0.0831 \mathrm{~kJ} /(\mathrm{mol} . \mathrm{K})$
When $K_{p}$ and $K_{c}$ are compared at $184^{\circ} \mathrm{C}$, it is found that

1 Whether $K_{p}$ is greater than, less than or equal to $\mathrm{K}_{\mathrm{c}}$ depends upon the total gas pressure
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
3 $K_{p}$ is less than $K_{c}$
4 $K_{p}$ is greater than $K_{c}$
Chemical Equilibrium

229327 A moles of $\mathbf{P C l}_{5}$ is heated in a closed container to equilibrium $\mathbf{P C l}_{5}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P C l}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a pressure of $\mathrm{P}$ atm. If $\mathrm{x}$ moles of $\mathrm{PCl}_{5}$ dissociate at equilibrium, then

1 $\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}$
2 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}{\mathrm{K}_{\mathrm{p}}}\right)^{1 / 2}$
3 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{P}}\right)^{1 / 2}$
4 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}\right)^{1 / 2}$
Chemical Equilibrium

229223 For the reversible reaction:
$\mathbf{A}(\mathrm{s})+\mathbf{B}(\mathrm{g}) \rightleftharpoons \quad \mathbf{C}(\mathrm{g})+\mathbf{D}(\mathrm{g}): \Delta \mathrm{G}^{\circ}=-350 \mathrm{~kJ}$.
Which one of the following statements is true?

1 The entropy change is negative.
2 Equilibrium constant is greater than one.
3 The reaction should be instantaneous.
4 The reaction is thermodynamically not feasible.
Chemical Equilibrium

229224 The relation between $K_{p}$ and $K_{c}$ is correctly shown as

1 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
4 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229326 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$,
$\left(K_{c}=1.8 \times 10^{-6}\right.$ at $\left.184^{\circ} \mathrm{C}\right)(\mathrm{R}=0.0831 \mathrm{~kJ} /(\mathrm{mol} . \mathrm{K})$
When $K_{p}$ and $K_{c}$ are compared at $184^{\circ} \mathrm{C}$, it is found that

1 Whether $K_{p}$ is greater than, less than or equal to $\mathrm{K}_{\mathrm{c}}$ depends upon the total gas pressure
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
3 $K_{p}$ is less than $K_{c}$
4 $K_{p}$ is greater than $K_{c}$
Chemical Equilibrium

229327 A moles of $\mathbf{P C l}_{5}$ is heated in a closed container to equilibrium $\mathbf{P C l}_{5}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P C l}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a pressure of $\mathrm{P}$ atm. If $\mathrm{x}$ moles of $\mathrm{PCl}_{5}$ dissociate at equilibrium, then

1 $\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}$
2 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}{\mathrm{K}_{\mathrm{p}}}\right)^{1 / 2}$
3 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{P}}\right)^{1 / 2}$
4 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}\right)^{1 / 2}$
Chemical Equilibrium

229223 For the reversible reaction:
$\mathbf{A}(\mathrm{s})+\mathbf{B}(\mathrm{g}) \rightleftharpoons \quad \mathbf{C}(\mathrm{g})+\mathbf{D}(\mathrm{g}): \Delta \mathrm{G}^{\circ}=-350 \mathrm{~kJ}$.
Which one of the following statements is true?

1 The entropy change is negative.
2 Equilibrium constant is greater than one.
3 The reaction should be instantaneous.
4 The reaction is thermodynamically not feasible.
Chemical Equilibrium

229224 The relation between $K_{p}$ and $K_{c}$ is correctly shown as

1 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
4 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$
Chemical Equilibrium

229326 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$,
$\left(K_{c}=1.8 \times 10^{-6}\right.$ at $\left.184^{\circ} \mathrm{C}\right)(\mathrm{R}=0.0831 \mathrm{~kJ} /(\mathrm{mol} . \mathrm{K})$
When $K_{p}$ and $K_{c}$ are compared at $184^{\circ} \mathrm{C}$, it is found that

1 Whether $K_{p}$ is greater than, less than or equal to $\mathrm{K}_{\mathrm{c}}$ depends upon the total gas pressure
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
3 $K_{p}$ is less than $K_{c}$
4 $K_{p}$ is greater than $K_{c}$
Chemical Equilibrium

229327 A moles of $\mathbf{P C l}_{5}$ is heated in a closed container to equilibrium $\mathbf{P C l}_{5}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P C l}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a pressure of $\mathrm{P}$ atm. If $\mathrm{x}$ moles of $\mathrm{PCl}_{5}$ dissociate at equilibrium, then

1 $\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}$
2 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}{\mathrm{K}_{\mathrm{p}}}\right)^{1 / 2}$
3 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{P}}\right)^{1 / 2}$
4 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}\right)^{1 / 2}$
Chemical Equilibrium

229223 For the reversible reaction:
$\mathbf{A}(\mathrm{s})+\mathbf{B}(\mathrm{g}) \rightleftharpoons \quad \mathbf{C}(\mathrm{g})+\mathbf{D}(\mathrm{g}): \Delta \mathrm{G}^{\circ}=-350 \mathrm{~kJ}$.
Which one of the following statements is true?

1 The entropy change is negative.
2 Equilibrium constant is greater than one.
3 The reaction should be instantaneous.
4 The reaction is thermodynamically not feasible.
Chemical Equilibrium

229224 The relation between $K_{p}$ and $K_{c}$ is correctly shown as

1 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
4 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$
Chemical Equilibrium

229326 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$,
$\left(K_{c}=1.8 \times 10^{-6}\right.$ at $\left.184^{\circ} \mathrm{C}\right)(\mathrm{R}=0.0831 \mathrm{~kJ} /(\mathrm{mol} . \mathrm{K})$
When $K_{p}$ and $K_{c}$ are compared at $184^{\circ} \mathrm{C}$, it is found that

1 Whether $K_{p}$ is greater than, less than or equal to $\mathrm{K}_{\mathrm{c}}$ depends upon the total gas pressure
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
3 $K_{p}$ is less than $K_{c}$
4 $K_{p}$ is greater than $K_{c}$
Chemical Equilibrium

229327 A moles of $\mathbf{P C l}_{5}$ is heated in a closed container to equilibrium $\mathbf{P C l}_{5}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P C l}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a pressure of $\mathrm{P}$ atm. If $\mathrm{x}$ moles of $\mathrm{PCl}_{5}$ dissociate at equilibrium, then

1 $\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}$
2 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}{\mathrm{K}_{\mathrm{p}}}\right)^{1 / 2}$
3 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{P}}\right)^{1 / 2}$
4 $\frac{\mathrm{x}}{\mathrm{a}}=\left(\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}+\mathrm{P}}\right)^{1 / 2}$
Chemical Equilibrium

229223 For the reversible reaction:
$\mathbf{A}(\mathrm{s})+\mathbf{B}(\mathrm{g}) \rightleftharpoons \quad \mathbf{C}(\mathrm{g})+\mathbf{D}(\mathrm{g}): \Delta \mathrm{G}^{\circ}=-350 \mathrm{~kJ}$.
Which one of the following statements is true?

1 The entropy change is negative.
2 Equilibrium constant is greater than one.
3 The reaction should be instantaneous.
4 The reaction is thermodynamically not feasible.
Chemical Equilibrium

229224 The relation between $K_{p}$ and $K_{c}$ is correctly shown as

1 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
2 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
4 $\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}}(\mathrm{RT})^{-\Delta \mathrm{n}_{\mathrm{g}}}$