06. Application of Kp and Kc
Chemical Equilibrium

229234 Identify the correct expression for the equilibrium constant of the following reaction:
$\mathbf{2} \mathbf{X}(\mathrm{g})+\mathbf{Y}(\mathrm{g}) \rightleftharpoons \quad 3 \mathbf{Z}(\mathrm{g})$

1 $\mathrm{K}=\frac{[\mathrm{X}]^{2}[\mathrm{Y}]}{[\mathrm{Z}]^{3}}$
2 $\mathrm{K}=\frac{[\mathrm{Z}]^{3}}{[\mathrm{X}]^{2}[\mathrm{Y}]}$
3 $\mathrm{K}=\frac{3[\mathrm{Z}]}{2[\mathrm{X}][\mathrm{Y}]}$
4 $\mathrm{K}=[\mathrm{Z}]^{3}[\mathrm{X}]^{2}[\mathrm{Y}]$
Chemical Equilibrium

229244 For the reaction taking place at certain temperature
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$,
if equilibrium pressure is $3 \mathrm{X}$ bar then $\Delta_{\mathrm{r}} \mathrm{G}^{0}$ would be

1 $-\mathrm{RT} \ln 9-3 \mathrm{RT} \ln \mathrm{X}$
2 $\mathrm{RT} \ln 4-3 \mathrm{RT} \ln \mathrm{X}$
3 $-3 \mathrm{RT} \ln 4 \mathrm{X}$
4 None of these
Chemical Equilibrium

229252 The value of $K_{c}$ for the dissociation reaction
$\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}(\mathrm{g}) \text { is } 2.1 \times 10^{-42}$
This equilibrium mixture contains mainly

1 $\mathrm{H}_{2}(\mathrm{~g})$
2 $\mathrm{H}(\mathrm{g})$ atom
3 $1: 1$ molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
4 1:2 molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
Chemical Equilibrium

229255 If $K_{c}$ is the equilibrium constant for the formation of $\mathrm{NH}_{3}$, the dissociation constant of $\mathrm{NH}_{3}$ under the same condition will be

1 $\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
2 $\mathrm{K}_{\mathrm{c}}^{2}$
3 $\sqrt{\mathrm{K}_{\mathrm{c}}}$
4 $\mathrm{K}_{\mathrm{c}}$
Chemical Equilibrium

229234 Identify the correct expression for the equilibrium constant of the following reaction:
$\mathbf{2} \mathbf{X}(\mathrm{g})+\mathbf{Y}(\mathrm{g}) \rightleftharpoons \quad 3 \mathbf{Z}(\mathrm{g})$

1 $\mathrm{K}=\frac{[\mathrm{X}]^{2}[\mathrm{Y}]}{[\mathrm{Z}]^{3}}$
2 $\mathrm{K}=\frac{[\mathrm{Z}]^{3}}{[\mathrm{X}]^{2}[\mathrm{Y}]}$
3 $\mathrm{K}=\frac{3[\mathrm{Z}]}{2[\mathrm{X}][\mathrm{Y}]}$
4 $\mathrm{K}=[\mathrm{Z}]^{3}[\mathrm{X}]^{2}[\mathrm{Y}]$
Chemical Equilibrium

229244 For the reaction taking place at certain temperature
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$,
if equilibrium pressure is $3 \mathrm{X}$ bar then $\Delta_{\mathrm{r}} \mathrm{G}^{0}$ would be

1 $-\mathrm{RT} \ln 9-3 \mathrm{RT} \ln \mathrm{X}$
2 $\mathrm{RT} \ln 4-3 \mathrm{RT} \ln \mathrm{X}$
3 $-3 \mathrm{RT} \ln 4 \mathrm{X}$
4 None of these
Chemical Equilibrium

229252 The value of $K_{c}$ for the dissociation reaction
$\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}(\mathrm{g}) \text { is } 2.1 \times 10^{-42}$
This equilibrium mixture contains mainly

1 $\mathrm{H}_{2}(\mathrm{~g})$
2 $\mathrm{H}(\mathrm{g})$ atom
3 $1: 1$ molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
4 1:2 molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
Chemical Equilibrium

229255 If $K_{c}$ is the equilibrium constant for the formation of $\mathrm{NH}_{3}$, the dissociation constant of $\mathrm{NH}_{3}$ under the same condition will be

1 $\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
2 $\mathrm{K}_{\mathrm{c}}^{2}$
3 $\sqrt{\mathrm{K}_{\mathrm{c}}}$
4 $\mathrm{K}_{\mathrm{c}}$
Chemical Equilibrium

229234 Identify the correct expression for the equilibrium constant of the following reaction:
$\mathbf{2} \mathbf{X}(\mathrm{g})+\mathbf{Y}(\mathrm{g}) \rightleftharpoons \quad 3 \mathbf{Z}(\mathrm{g})$

1 $\mathrm{K}=\frac{[\mathrm{X}]^{2}[\mathrm{Y}]}{[\mathrm{Z}]^{3}}$
2 $\mathrm{K}=\frac{[\mathrm{Z}]^{3}}{[\mathrm{X}]^{2}[\mathrm{Y}]}$
3 $\mathrm{K}=\frac{3[\mathrm{Z}]}{2[\mathrm{X}][\mathrm{Y}]}$
4 $\mathrm{K}=[\mathrm{Z}]^{3}[\mathrm{X}]^{2}[\mathrm{Y}]$
Chemical Equilibrium

229244 For the reaction taking place at certain temperature
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$,
if equilibrium pressure is $3 \mathrm{X}$ bar then $\Delta_{\mathrm{r}} \mathrm{G}^{0}$ would be

1 $-\mathrm{RT} \ln 9-3 \mathrm{RT} \ln \mathrm{X}$
2 $\mathrm{RT} \ln 4-3 \mathrm{RT} \ln \mathrm{X}$
3 $-3 \mathrm{RT} \ln 4 \mathrm{X}$
4 None of these
Chemical Equilibrium

229252 The value of $K_{c}$ for the dissociation reaction
$\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}(\mathrm{g}) \text { is } 2.1 \times 10^{-42}$
This equilibrium mixture contains mainly

1 $\mathrm{H}_{2}(\mathrm{~g})$
2 $\mathrm{H}(\mathrm{g})$ atom
3 $1: 1$ molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
4 1:2 molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
Chemical Equilibrium

229255 If $K_{c}$ is the equilibrium constant for the formation of $\mathrm{NH}_{3}$, the dissociation constant of $\mathrm{NH}_{3}$ under the same condition will be

1 $\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
2 $\mathrm{K}_{\mathrm{c}}^{2}$
3 $\sqrt{\mathrm{K}_{\mathrm{c}}}$
4 $\mathrm{K}_{\mathrm{c}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229234 Identify the correct expression for the equilibrium constant of the following reaction:
$\mathbf{2} \mathbf{X}(\mathrm{g})+\mathbf{Y}(\mathrm{g}) \rightleftharpoons \quad 3 \mathbf{Z}(\mathrm{g})$

1 $\mathrm{K}=\frac{[\mathrm{X}]^{2}[\mathrm{Y}]}{[\mathrm{Z}]^{3}}$
2 $\mathrm{K}=\frac{[\mathrm{Z}]^{3}}{[\mathrm{X}]^{2}[\mathrm{Y}]}$
3 $\mathrm{K}=\frac{3[\mathrm{Z}]}{2[\mathrm{X}][\mathrm{Y}]}$
4 $\mathrm{K}=[\mathrm{Z}]^{3}[\mathrm{X}]^{2}[\mathrm{Y}]$
Chemical Equilibrium

229244 For the reaction taking place at certain temperature
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$,
if equilibrium pressure is $3 \mathrm{X}$ bar then $\Delta_{\mathrm{r}} \mathrm{G}^{0}$ would be

1 $-\mathrm{RT} \ln 9-3 \mathrm{RT} \ln \mathrm{X}$
2 $\mathrm{RT} \ln 4-3 \mathrm{RT} \ln \mathrm{X}$
3 $-3 \mathrm{RT} \ln 4 \mathrm{X}$
4 None of these
Chemical Equilibrium

229252 The value of $K_{c}$ for the dissociation reaction
$\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}(\mathrm{g}) \text { is } 2.1 \times 10^{-42}$
This equilibrium mixture contains mainly

1 $\mathrm{H}_{2}(\mathrm{~g})$
2 $\mathrm{H}(\mathrm{g})$ atom
3 $1: 1$ molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
4 1:2 molar mixture of $\mathrm{H}_{2}$ and $\mathrm{H}$
Chemical Equilibrium

229255 If $K_{c}$ is the equilibrium constant for the formation of $\mathrm{NH}_{3}$, the dissociation constant of $\mathrm{NH}_{3}$ under the same condition will be

1 $\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
2 $\mathrm{K}_{\mathrm{c}}^{2}$
3 $\sqrt{\mathrm{K}_{\mathrm{c}}}$
4 $\mathrm{K}_{\mathrm{c}}$