06. Application of Kp and Kc
Chemical Equilibrium

229260 In which of the following case, does the reaction go farthest to completion if

1 $\mathrm{K}_{\mathrm{c}}=10^{2}$
2 $\mathrm{K}_{\mathrm{c}}=10$
3 $\mathrm{K}_{\mathrm{c}}=10^{-2}$
4 $\mathrm{K}_{\mathrm{c}}=1$
Chemical Equilibrium

229261 The equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+$ $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 . If the volume of the container is reduced to half of the original volume, the value of the quilibrium constant will be

1 16
2 32
3 64
4 128
Chemical Equilibrium

229263 For a given exothermic reaction, $K_{p}$ and $K_{p}^{\prime}$ are the equilibrium constants at temperature $T_{1}$ and $T_{2}$ respectively. Assuming that heat of reactions is constant if temperature range between $T_{1}$ and $T_{2}$ it is readily observed that

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{p}}^{\prime}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{p}}^{\prime}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{p}}^{\prime}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{p}}^{\prime}}$
Chemical Equilibrium

229294 What is the equation for the equilibrium constant $\left(K_{c}\right)$ for the following reaction?
$\frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{3} \mathrm{~B}(\mathrm{~g}) \stackrel{\mathrm{T}(\mathrm{K})}{\rightleftharpoons} \frac{2}{3} \mathrm{C}(\mathrm{g})$

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}{[\mathrm{C}]^{3 / 2}}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{3 / 2}}{[\mathrm{~A}]^{2}[\mathrm{~B}]^{3}}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}+[\mathrm{B}]^{1 / 3}}$
Chemical Equilibrium

229272 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ the units of $K_{p}$ will be

1 atm
2 $(\mathrm{atm})^{3}$
3 $(\mathrm{atm})^{-2}$
4 $(\mathrm{atm})^{2}$
Chemical Equilibrium

229260 In which of the following case, does the reaction go farthest to completion if

1 $\mathrm{K}_{\mathrm{c}}=10^{2}$
2 $\mathrm{K}_{\mathrm{c}}=10$
3 $\mathrm{K}_{\mathrm{c}}=10^{-2}$
4 $\mathrm{K}_{\mathrm{c}}=1$
Chemical Equilibrium

229261 The equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+$ $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 . If the volume of the container is reduced to half of the original volume, the value of the quilibrium constant will be

1 16
2 32
3 64
4 128
Chemical Equilibrium

229263 For a given exothermic reaction, $K_{p}$ and $K_{p}^{\prime}$ are the equilibrium constants at temperature $T_{1}$ and $T_{2}$ respectively. Assuming that heat of reactions is constant if temperature range between $T_{1}$ and $T_{2}$ it is readily observed that

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{p}}^{\prime}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{p}}^{\prime}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{p}}^{\prime}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{p}}^{\prime}}$
Chemical Equilibrium

229294 What is the equation for the equilibrium constant $\left(K_{c}\right)$ for the following reaction?
$\frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{3} \mathrm{~B}(\mathrm{~g}) \stackrel{\mathrm{T}(\mathrm{K})}{\rightleftharpoons} \frac{2}{3} \mathrm{C}(\mathrm{g})$

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}{[\mathrm{C}]^{3 / 2}}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{3 / 2}}{[\mathrm{~A}]^{2}[\mathrm{~B}]^{3}}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}+[\mathrm{B}]^{1 / 3}}$
Chemical Equilibrium

229272 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ the units of $K_{p}$ will be

1 atm
2 $(\mathrm{atm})^{3}$
3 $(\mathrm{atm})^{-2}$
4 $(\mathrm{atm})^{2}$
Chemical Equilibrium

229260 In which of the following case, does the reaction go farthest to completion if

1 $\mathrm{K}_{\mathrm{c}}=10^{2}$
2 $\mathrm{K}_{\mathrm{c}}=10$
3 $\mathrm{K}_{\mathrm{c}}=10^{-2}$
4 $\mathrm{K}_{\mathrm{c}}=1$
Chemical Equilibrium

229261 The equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+$ $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 . If the volume of the container is reduced to half of the original volume, the value of the quilibrium constant will be

1 16
2 32
3 64
4 128
Chemical Equilibrium

229263 For a given exothermic reaction, $K_{p}$ and $K_{p}^{\prime}$ are the equilibrium constants at temperature $T_{1}$ and $T_{2}$ respectively. Assuming that heat of reactions is constant if temperature range between $T_{1}$ and $T_{2}$ it is readily observed that

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{p}}^{\prime}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{p}}^{\prime}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{p}}^{\prime}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{p}}^{\prime}}$
Chemical Equilibrium

229294 What is the equation for the equilibrium constant $\left(K_{c}\right)$ for the following reaction?
$\frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{3} \mathrm{~B}(\mathrm{~g}) \stackrel{\mathrm{T}(\mathrm{K})}{\rightleftharpoons} \frac{2}{3} \mathrm{C}(\mathrm{g})$

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}{[\mathrm{C}]^{3 / 2}}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{3 / 2}}{[\mathrm{~A}]^{2}[\mathrm{~B}]^{3}}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}+[\mathrm{B}]^{1 / 3}}$
Chemical Equilibrium

229272 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ the units of $K_{p}$ will be

1 atm
2 $(\mathrm{atm})^{3}$
3 $(\mathrm{atm})^{-2}$
4 $(\mathrm{atm})^{2}$
Chemical Equilibrium

229260 In which of the following case, does the reaction go farthest to completion if

1 $\mathrm{K}_{\mathrm{c}}=10^{2}$
2 $\mathrm{K}_{\mathrm{c}}=10$
3 $\mathrm{K}_{\mathrm{c}}=10^{-2}$
4 $\mathrm{K}_{\mathrm{c}}=1$
Chemical Equilibrium

229261 The equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+$ $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 . If the volume of the container is reduced to half of the original volume, the value of the quilibrium constant will be

1 16
2 32
3 64
4 128
Chemical Equilibrium

229263 For a given exothermic reaction, $K_{p}$ and $K_{p}^{\prime}$ are the equilibrium constants at temperature $T_{1}$ and $T_{2}$ respectively. Assuming that heat of reactions is constant if temperature range between $T_{1}$ and $T_{2}$ it is readily observed that

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{p}}^{\prime}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{p}}^{\prime}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{p}}^{\prime}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{p}}^{\prime}}$
Chemical Equilibrium

229294 What is the equation for the equilibrium constant $\left(K_{c}\right)$ for the following reaction?
$\frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{3} \mathrm{~B}(\mathrm{~g}) \stackrel{\mathrm{T}(\mathrm{K})}{\rightleftharpoons} \frac{2}{3} \mathrm{C}(\mathrm{g})$

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}{[\mathrm{C}]^{3 / 2}}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{3 / 2}}{[\mathrm{~A}]^{2}[\mathrm{~B}]^{3}}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}+[\mathrm{B}]^{1 / 3}}$
Chemical Equilibrium

229272 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ the units of $K_{p}$ will be

1 atm
2 $(\mathrm{atm})^{3}$
3 $(\mathrm{atm})^{-2}$
4 $(\mathrm{atm})^{2}$
Chemical Equilibrium

229260 In which of the following case, does the reaction go farthest to completion if

1 $\mathrm{K}_{\mathrm{c}}=10^{2}$
2 $\mathrm{K}_{\mathrm{c}}=10$
3 $\mathrm{K}_{\mathrm{c}}=10^{-2}$
4 $\mathrm{K}_{\mathrm{c}}=1$
Chemical Equilibrium

229261 The equilibrium constant for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+$ $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is 64 . If the volume of the container is reduced to half of the original volume, the value of the quilibrium constant will be

1 16
2 32
3 64
4 128
Chemical Equilibrium

229263 For a given exothermic reaction, $K_{p}$ and $K_{p}^{\prime}$ are the equilibrium constants at temperature $T_{1}$ and $T_{2}$ respectively. Assuming that heat of reactions is constant if temperature range between $T_{1}$ and $T_{2}$ it is readily observed that

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{p}}^{\prime}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{p}}^{\prime}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{p}}^{\prime}$
4 $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{p}}^{\prime}}$
Chemical Equilibrium

229294 What is the equation for the equilibrium constant $\left(K_{c}\right)$ for the following reaction?
$\frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{3} \mathrm{~B}(\mathrm{~g}) \stackrel{\mathrm{T}(\mathrm{K})}{\rightleftharpoons} \frac{2}{3} \mathrm{C}(\mathrm{g})$

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}{[\mathrm{C}]^{3 / 2}}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{3 / 2}}{[\mathrm{~A}]^{2}[\mathrm{~B}]^{3}}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}[\mathrm{~B}]^{1 / 3}}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{2 / 3}}{[\mathrm{~A}]^{1 / 2}+[\mathrm{B}]^{1 / 3}}$
Chemical Equilibrium

229272 For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ the units of $K_{p}$ will be

1 atm
2 $(\mathrm{atm})^{3}$
3 $(\mathrm{atm})^{-2}$
4 $(\mathrm{atm})^{2}$